Spis treści

Streszczenie... 9

Summary... 11

Spis oznaczeń.. 13

1. Wprowadzenie... 15

2. Oddziaływanie promieniowania z materią i generacja ładunku elektrycznego w detektorze .. 20
 2.1. Cząstki jonizujące – straty energii i zasięg .. 21
 2.2. Oddziaływanie elektronów (promieniowania β) .. 23
 2.3. Oddziaływanie promieniowania α .. 25
 2.4. Oddziaływanie fotonów (promieniowania γ) .. 26
 2.5. Absorpcja promieniowania X ... 28

3. Detektory MAPS – wprowadzenie .. 30
 3.1. Idea wczesnej wersji detektora MAPS ... 31
 3.2. Przykładowy detektor MAPS zbudowany do pracy w eksperymentie fizycznym 34
 3.3. Ograniczenia i perspektywy zastosowań detektorów MAPS poza śledzeniem torów cząstek .. 34

4. MIMOSA V – detektor MAPS używany w fazie demonstracji ... 37
 4.1. Motywacja do badań nad wersją detektora MIMOSA V zmodyfikowaną przez ścianianie ... 37
 4.2. Detektor MAPS MIMOSA V ... 39
 4.2.1. Architektura układu MIMOSA V ... 39
 4.2.2. Sposób odczytu układu MIMOSA V .. 44

5. Przystosowanie i wykorzystanie detektora MAPS do obrazowania przy wykorzystaniu niskoenergetycznych elektronów .. 47
 5.1. Detektor MAPS przystosowany do detekcji niskoenergetycznych elektronów 47
 5.2. Kalibracja wzmocnienia ścianionego detektora ... 50
 5.3. Obrazowanie przy wykorzystaniu niskoenergetycznych elektronów w testowym systemie HPD ... 56
 5.3.1. Opis testowego systemu HPD ... 56
 5.3.2. Wyniki otrzymane w testowym systemie HPD ... 58
 5.4. Autoradiografia źródła radioaktywnego nasyconego trytem 64
 5.4.1. Przegląd dotychczasowo stosowanych metod detekcji cząstek β emitowanych przy rozpadzie trytu ... 64
 5.4.2. Symulacja generacji sygnału .. 65
5.4.3. Źródło \(^{3}\)H, stanowisko testowe i organizacja testów
5.4.4. Wyniki autoradiografii i ich dyskusja
5.5. Bezpośrednia detekcja elektronów w mikroskopie elektronowym
5.5.1. Przegląd dotychczas stosowanych metod rejestracji obrazów w mikroskopie elektronowym
5.5.2. Dwa podejścia do rejestracji obrazów w mikroskopii elektronowej
5.5.3. Motywacja do przeprowadzenia testów dwóch wersji układu MIMOSA V zainstalowanych w mikroskopie elektronowym
5.5.4. Opis systemu testowego i montażu detektora w mikroskopie elektronowym
5.5.5. Testy układów MIMOSA V wykonane w skaningowym mikroskopie elektronowym
5.5.6. Testy układów MIMOSA V wykonane w transmisyjnym mikroskopie elektronowym
5.5.6.1. Rejestracja obrazów transmisyjnych
5.5.6.2. Obrazy wzorów dyfrakcyjnych
5.5.6.3. Widma energetyczne pojedynczych elektronów
5.5.6.4. Analiza rozdzielczości przestrzennej – MTF
5.5.7. Zniszczenia radiacyjne i kwestia odporności detektora
6. Uzupełniające testy układu MIMOSA V wykonane przy użyciu wiązki synchrotronowego promieniowania X
6.1. Motywacja do przeprowadzenia eksperymentu z detektorem MIMOSA V
6.2. Instalacja detektora MIMOSA V na wiązce
6.3. Testy obrazowania przy użyciu promieniowania X
6.3.1. Obrazowanie fragmentu kości z implantem
6.3.2. Obrazowanie obiektu zawierającego elementy różnej gęstości na przykładzie obrazu insekta
6.4. Testy możliwości liczenia fotonów X
7. Wpływ promieniowania na detektor oraz konstrukcja diod zbierających ładunki o zredukowanym prądzie upływu i zwiększonej odporności na promieniowanie
7.1. Ogólny podział efektów radiacyjnych
7.2. Ustalenia dotyczące odporności radiacyjnej detektorów MAPS
7.3. Sposoby wpływu na odporność urządzeń półprzewodnikowych na promieniowanie
7.4. Struktury diod zbierających ładunek w detektorze MAPS charakteryzujące się obniżonym prądem upływu
8. MIMOTERA – układ detektora MAPS przeznaczony do monitorowania w czasie rzeczywistym wiązki w terapii hadronowej
8.1. Szczegóły projektu układu MIMOTERA
8.1.1. Założenia projektowe i specyfikacja parametrów projektowanego układu MIMOTERA .. 120
8.1.2. Struktura i projekt układu MIMOTERA... 122
8.1.3. Szczegółowy opis architektury układu MIMOTERA 125
8.1.4. Szczegóły budowy piksela ... 129
8.2. Wyniki testów układu MIMOTERA .. 130
 8.2.1. Przybliżona kalibracja wzmacnienia konwersji ładunku na napięcie .. 131
 8.2.2. Wyniki testów przy stymulacji laserem ... 132
 8.2.3. Wyniki testów na wiązce protonów z cyklotronu 133
9. Monolityczne detektory pikselowe w zaadaptowanych technologiach CMOS... 137
 9.1. Przykład zmodyfikowanej technologii na jednolitym podłożu półprzewodnikowym do budowy detektora MAPS 138
 9.2. Idea monolitycznego detektora pikselowego w zaadaptowanej submikronowej technologii Silicon–on–Insulator CMOS...... 140
 9.3. Szczegółowy opis procesu SOI użytego do wytwarzania układów MAMBO.... 142
 9.4. Projekty układów MAMBO – prototypowe detektory SOI 144
 9.4.1. Szczegóły projektu pojedynczego piksela.................................. 147
 9.4.2. Testy toru analogowego przetwarzania sygnału w pikselu 159
 9.5. Postulaty polepszenia wyjściowego procesu SOI do budowy detektorów pikselowych .. 165
 9.5.1. Wprowadzenie grubej warstwy SOI ... 166
 9.5.2. Wprowadzenie zagnieżdżonych studni BNW i BPW 167
 9.5.3. Projekt i testy pierwszego układu MAMBO wykorzystującego system zagnieżdżonych studni BNW i BPW 172
10. Podsumowanie .. 181
11. Zakończenie: dalsze kierunki prac i podziękowania 188
 11.1. Dalsze kierunki prac ... 188
 11.2. Podziękowania .. 191
Literatura .. 193
Streszczenie

Praca poświęcona jest monolitycznym krzemowym detektorom pikselowym, nazywanym MAPS (ang. Monolithic Active Pixel Sensors), w wybranym zastosowaniu do obrazowania przy użyciu niskoenergetycznych elektronów i miękkiego promieniowania X. Główną zaletą monolitycznych detektorów pikselowych jest możliwość ich projektowania jako układów scalonych przy użyciu standardowych narzędzi komputerowego wspomagania procesu projektowego i ich wytwarzania w całkowicie standardowym lub nieznacznie zmodyfikowanym typowym procesie używanym do produkcji układów scalonych. W ten sposób koszt wytwarzania detektorów monolitycznych jest niższy, szczególnie w porównaniu z kosztem wytwarzania detektorów hybrydowych. Te ostatnie wymagają specjalistycznych technik łączenia detektora z elektronicznym układem odczytowym, które są kosztowne i nie pozwalają na bardzo małe rozmiary pikseli. Jednak, mimo że w sposób naturalny detektory hybrydowe oferują znacznie szersze spektrum możliwości adaptacyjnych, np. wynikających z użycia materiałów innych niż krzem na detektor, to dla klasy zastosowań rozważanych w pracy detektoery monolityczne stanowią wybór optymalny. Detektoery monolityczne mogą mieć duże rozmiary i łatwiej niż detektoery hybrydowe mogą być poddawane przystosowaniu mechanicznemu, co zostało wykorzystane w opisanych badaniach.

Szczególnie ważne w detekcji niskoenergetycznych elektronów, ze względu na dążenie do osiągnięcia wysokiej wydajności detekcji i wysokiej rozdzielczości przestrzennej, jest ścienienie detektora. Prace nad ścienianiem umotywowane były celami wyznaczonymi przez budowę urządzenia wykorzystującego elektrony wtórne, emitowane przez cienką folię aluminiową umieszczoną na drodze wiązki jonów, do monitorowania w czasie rzeczywistym dawki hadronowej w terapii nowotworów. Takie były cele projektu SUCIMA, prowadzonego w ramach Piątego Programu Ramowego Unii Europejskiej. Pierwszy ścieniony detektor MAPS został zbudowany przy wykorzystaniu platformy jednomegapikselowego układu MIMOSA V. Detektor ten miał wymiary pełnej retyki i był wytworzony w procesie CMOS o minimalnej długości bramki 0,6 μm. Detektor MIMOSA V, ścieniony do grubości warstwy epitaksjalnej, został poddany dokładnym testom, które w szczegółach zostały przedstawione w monografii.

Do kalibracji wzmocnienia konwersji ładunku na napięcie detektora MIMOSA V wykorzystano metodę bazującą na niskoenergetycznych fotonach promieniowania X, emitowanych ze źródeł radioaktywnych. Z kolei niskoenergetyczne fotony promieniowania X z wiązki promieniowania synchrotronowego zostały wykorzystane do obrazowania przy użyciu detektora MIMOSA V. W wyniku ekspozycji uzyskano obrazy obiektów o wysokim kontraście i wysokiej rozdzielczości przestrzennej. Następnie ścieniony detektor MIMOSA V został poddany testom w następujących zastosowaniach: do obrazowania w wyniku bezpośredniej detekcji elektronów przyspieszanych w polu elektrycznym w testowym sys-
temie hybrydowej fotodiody, do autoradiografii źródła próbki radioaktywnej nasyconej trytem oraz do uzyskiwania w czasie rzeczywistym obrazów w wyniku bezpośredniej detekcji elektronów w skaningowym i transmisyjnym mikroskopie elektronowym. Wszystkie te testy były pionierskie i pozwoliły na uzyskanie eksperymentalnego potwierdzenia przydatności detektorów MAPS w tych zastosowańach.

Korzystając z sukcesu ścięnięcia i uzyskanych zadowalających wyników z testów układu MIMOSA V, zaprojektowano i zbudowano detektor MIMOTERA, który miał parametry dobrane do wymagań monitora wiązki w terapii hadronowej. Ze względu na konieczność uwarunkowaną pracę układu MIMOTERA opracowano do jego projektu nowe struktury diod zbierających ładunek, które charakteryzowały się obniżonym prądem upływu. Detektor MIMOTERA, po ścięciu, został poddany dokładnym testom. W te testy włączone były eksperymenty obrazowania profilu wiązki pierwotnej w cyklotronie przy użyciu elektronów o energii 20 keV pochodzącycych z emisji wtórnej i rzutowanych na płaszczyznę detektora przez system elektrostatyczny w prototypowym monitorze wiązki hadronowej. Szczegóły przeprowadzonych testów i ich pozytywne wyniki zostały przedstawione w monografii.

Istotną część pracy poświęcono budowie detektorów MAPS w zaadaptowanych technologiach CMOS. W części tej skupiono się na technologii SOI i przedstawiono szczegóły zaawansowanych struktur układowych i detektorowych. Opisano również wypracowane ulepszienia do procesu wyjściowego, które pozwalają na usunięcie pierwotnie istniejących sprzężeń pomiędzy częściami zawierającymi elektroniczny układ odczytowy a detektorem. Ta część monografii poświęcona jest niepodlegającemu dyskusji, ze względu na liczne korzyści, ukierunkowanym prac na projekt struktury piksela wyposażonego w układ przedwzmacniacz ładunkowego, w dyskryminatory oraz w liczniki do zliczania pojedynczych uderzeń cząstek. W pracy zamieszczono opis projektu w pełni funkcjonalnego detektora MAMBO, wykonanego w technice CMOS SOI z uwzględnieniem specyfiki sposobu projektowania układów scalonych w tej technologii, i dokonano prezentacji wyników obrazowania z wykorzystaniem niskoenergetycznych fotonów promieniowania X. Jest to jednocześnie podsumowanie rozwoju pikselowych detektorów monolitycznych, które od stosunkowo prostych trójmowietorowych architektur układowych ewoluowały do struktur zawierających ponad 1000 tranzystorów w każdym pikselu.

Przyszłość prac nad detektorami pikselowymi została nakreślona przez krótką prezentację techniki budowy układów zintegrowanych trójwymiarowo. Jest to kierunek rokujący duże nadzieje, który łączy w sobie zalety techniki monolitycznej i nowej generacji hybrydacji.

Monografia została zredagowana w sposób przedstawiający szczegółowo i chronologicznie przebieg badań nad możliwościami konstruowania i fizycznej realizacji detektorów pikselowych w technologii monolitycznej z uwzględnieniem wymagań ich praktycznego zastosowania.
Summary

This work is dedicated to monolithic, silicon pixel detectors, called MAPS (Monolithic Active Pixel Sensors) in selected applications to imaging by using low-energy electrons and soft X-rays. The main advantage of monolithic detectors is the possibility of designing these devices as integrated circuits using standard tools for computer assisted design and their fabrication in a fully standard or slightly modified typical processes used for high-volume manufacturing of integrated circuits. The production cost of monolithic detectors is lower, particularly in comparison with hybrid detectors. The latter require specialized techniques for assembling a sensor part with an electronic readout circuit, which are expensive and do not allow for pixels of very small sizes. However, despite of the fact that hybrid detectors offer naturally a much wider range of adaptability and flexibility, for example, resulting from the use of materials other than silicon for a sensing part, monolithic detectors are the best choice for the class of applications that are under consideration in this work. Monolithic detectors can also be large area devices, and, easier than hybrid detectors, may be subjected to post-foundry processing, including mechanical grinding and other adjustments which intrinsically bring not negligible mechanical stresses that often cannot be handled by hybrid options. The latter feature was exploited in the detector research included and described in this work.

Particularly important in the detection of low energy electrons, is thinning of a detector and providing an entrance window that will be as thin as possible in order to achieve high detection efficiency and high spatial resolution. The actual work on precise thinning of MAPS detectors down to the epitaxial layer was motivated by the construction of a device for the real-time beam monitoring in hadrontherapy of cancer. The concept was based on using secondary electrons emitted by a thin Aluminum foil placed in the path of the beam used in treatments. These were the goals of the SUCIMA project that was carried out under the Fifth Framework Program funded by the European Union. First, thinned MAPS detector was built using a test platform of the one-megapixel MIMOSA V device. This detector had a size of a full reticle and was manufactured in a CMOS process with a minimum gate length of 0.6 μm. The MIMOSA V detector, which was thinned to the thickness of the epitaxial layer, was extensively tested, and its performances were compared to a device before post-processing. The results of tests are shown in detail in the monograph. A method based on low-energy X-ray photons, emitted from radioactive sources, was used for the calibration of a charge-to-voltage-conversion gain of a detector and is described in the monograph. The analysis proving correctness of this method is given too. Low energy X-ray photons from the beam of synchrotron radiation were used for tests of imaging capabilities of the MIMOSA V detector. Images of objects were obtained with high contrast and high spatial resolution as a result of exposures. Then, the thinned MIMOSA V detector was tested in such applications as: imaging by the direct detection of electrons accelerated by an
electric field in a hybrid photodiode test system, autoradiography of a radioactive sample containing tritium and to obtain real time images by the direct detection of electrons in a scanning and transmission electron microscope. All the tests were pioneering and led to the experimental confirmation of usefulness of the MAPS detectors in these applications.

Based on the success of thinning and on the equally satisfactory results of tests of the MIMOSA V detector, the MIMOTERA detector was designed and built. Its specification was matched to the performance requirements of the beam monitor in hadrontherapy. New structures of the charge collecting diodes, which were characterized by low leakage currents, were developed for the design of the MIMOTERA device due to the need conditioned by the environment and the way of how MIMOTERA had to work. The MIMOTERA device was thoroughly tested after completion of its thinning. Imaging experiments of a profile of a primary cyclotron beam were included in these tests using 20 keV electrons of the secondary emission from an Al foil. The electrons were projected on the plane of the detector by an electrostatic system in a prototype of a hadron beam monitor system. Details of the tests and positive results are presented in the monograph.

An important and extensive part of the monograph is devoted to the MAPS detectors built in adapted CMOS technologies. This culminating section focuses on the SOI technology and provides advanced details on the technology process that was used for the designs as well as it discusses unique features of the developed detector structures. A comprehensive description of the ongoing project of a family of fully functional detectors, called MAMBOs that are made in the SOI CMOS technology with emphasis on how to approach designing of mixed-mode integrated circuit in the SOI technology is provided. As SOI processes exhibited sensitivity to detrimental coupling between the part containing the readout electronics and detector, improvements proposed to the process are also discussed in details. The changes to the process are presented starting from a general description and motivation through device physics simulation to the actual implementation as a part of the process. Not only the proposal of the process modification is presented but also the actual results obtained in testing of the circuits that were designed in the modified process are given. The detailed analyses of circuit blocks, like: a charge preamplifier with pole-zero cancellation, a shaping filter that is AC-coupled to a discriminator and counters to count individual particles hits are provided. The paragraph discussing monolithic detectors realized in the SOI technology gives a presentation of the results of imaging using low-energy X-ray photons and at the same time is a summary of the development of monolithic pixel detectors, which started with a relatively simple three-transistor architectures and evolved into structures containing over 1000 transistors in each pixel.

Future work on the pixel detector has been outlined by a brief presentation of the construction techniques of three-dimensional integrated circuits. This is the direction for future pixel detectors. It combines the advantages of the monolithic approach and hybridization, leading to a new generation of pixel detectors.

The monograph was drafted in a manner showing in detail and chronologically the course of research on the possibilities of design and of physical implementations of pixel detectors in monolithic technologies with regard of meeting the requirements of practical application.
Spis oznaczeń

ADCU – ang. Analog-to-Digital Conversion Unit – jednostka przetwarzania analogowo-cyfrowego
BPW – ang. Buried P-type well – zagrzebana studnia typu P
BNW – ang. Buried N-type well – zagrzebana studnia typu N
BOX – ang. Buried Oxide – warstwa tlenku zagrzebanego
BS – ang. Back-Side – wersja układu MIMOSA V ściennego do warstwy epitaksjalnej i ekspozycji od strony ściennjej
CCE – ang. Charge Collection Efficiency – wydajność zbierania ładunku
CDS – ang. Correlated Double Sampling – podwójne próbkowanie z zachowaniem korelacji sygnału
CMOS – ang. Complementary Metal-Oxide-Semiconductor – nazwa technologii wytwarzania układów scalonych
CMP – ang. Chemical-Mechanical Polishing – metoda planaryzacji powierzchni używana w technologii wytwarzania układów scalonych
CVD – ang. Chemical Vapor Deposition – metoda osadzania materiału z fazy lotnej w warunkach odpowiedniego ciśnienia i temperatury
CVF – ang. Charge to Voltage conversion Factor – współczynnik konwersji zebranego ładunku na napięciowy sygnał wyjściowy
CR-RC – filtr typu CR-RC (pseudogaussowski różniczkująco-całujący)
DFF – ang. D-type flip/flop – przerzutnik typu D
DDFF – ang. Differential D-type flip/flop – przerzutnik typu D o strukturze różnicowej
DQE – ang. Detective Quantum Efficiency – miara wydajności detekcji wiązająca stosunek sygnału do szumu na wejściu (źródło sygnału) i na wyjściu (rejestrowany obraz)
FS – ang. Front-Side – wersja układu MIMOSA V przeznaczonego do ekspozycji od strony układu elektronicznego
e^-h^+ – para elektron-dziura
ENC – ang. Equivalent Noise Charge – równoważny ładunek szumu; wartość szumu, przeniesiona na wejściu i wyrażona w jednostkach sygnału wejściowego – równa liczbie nośników ładunku (elektronów)
FOX – ang. Field Oxide – technologia izolacji stosowana w układach scalonych starszej generacji
fps – ang. frame per second – szybkość przesyłania obrazów w ramkach na sekundę
HPD – ang. Hybrid Photo-Diode – hybrydowy fotodetektor składający się z fotokatody, wnęki przyspieszającej elektrony i detektora czułego na
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILC</td>
<td>ang. International Linear Collider – nazwa międzynarodowego programu budowy zderzacza liniowego leptonów e⁺/e⁻</td>
</tr>
<tr>
<td>JTAG</td>
<td>nazwa standardu interfejsu szeregowego</td>
</tr>
<tr>
<td>kT/C</td>
<td>szum resetu (szum zerowania) próbowany szum termiczny związany z przełączaniem klucza</td>
</tr>
<tr>
<td>LET</td>
<td>ang. Linear Energy Transfer – straty energii przelatującej cząstki w ośrodku na jednostkę przebytej drogi</td>
</tr>
<tr>
<td>LHC</td>
<td>ang. Large Hadron Collider – Wielki Zderzacz Hadronów zlokalizowany w CERNie w Genewie</td>
</tr>
<tr>
<td>LSF</td>
<td>ang. Line Spread Function – miara rozdzielczości detektora</td>
</tr>
<tr>
<td>MAPS</td>
<td>ang. Monolithic Active Pixel Sensors – nazwa rodziny pikselowych monolitycznych detektorów</td>
</tr>
<tr>
<td>MiMCap</td>
<td>ang. Metal-Insulator-Metal Capacitance – pojemność metal-izolator-metal (dostępna w technologii układów scalonych)</td>
</tr>
<tr>
<td>MPW</td>
<td>ang. Multi-Project Wafer – sposób produkcji układów scalonych oferowany przez tzw. Silicon Brokers (pośredników), który polega na tym, że retyka jest dzielona pomiędzy uczestników</td>
</tr>
<tr>
<td>MTF</td>
<td>ang. Modulation Transfer Function – miara rozdzielczości detektora</td>
</tr>
<tr>
<td>NIEL</td>
<td>ang. Non-Ionizing Energy Loss – miara strat energii uderzającej cząstki, która nie przypada na jonizację</td>
</tr>
<tr>
<td>NMOS</td>
<td>ang. N-type Metal-Oxide-Semiconductor – tranzystor NMOS</td>
</tr>
<tr>
<td>PMOS</td>
<td>ang. P-type Metal-Oxide-Semiconductor – tranzystor PMOS</td>
</tr>
<tr>
<td>PSF</td>
<td>ang. Point Spread Function – miara rozdzielczości detektora</td>
</tr>
<tr>
<td>RIE</td>
<td>ang. Reactive Ion Etching – metoda trawienia przy wykorzystaniu plazmy</td>
</tr>
<tr>
<td>RTS</td>
<td>ang. Random Telegraph Signal – szum niskoczęstotliwościowy polegający na przełączaniu pomiędzy co najmniej dwoma rozróżnialnymi poziomami</td>
</tr>
<tr>
<td>SNR</td>
<td>ang. Signal to Noise Ratio – stosunek sygnału do szumu</td>
</tr>
<tr>
<td>SOI</td>
<td>ang. Silicon-on-Insulator – nazwa technologii wytwarzania układów scalonych</td>
</tr>
<tr>
<td>STI</td>
<td>ang. Shallow Trench Isolation – nazwa technologii izolacji stosowanej w wytwarzaniu układów scalonych</td>
</tr>
<tr>
<td>USB</td>
<td>nazwa standardu interfejsu szeregowego</td>
</tr>
<tr>
<td>VDSM</td>
<td>ang. Very Deep Sub-Micron – nazwa przyjęta dla określania technologii wytwarzania układów scalonych o minimalnej długości bramki tranzystora poniżej 130 nm</td>
</tr>
<tr>
<td>VLSI</td>
<td>ang. Very Large Scale of Integration – technologia wytwarzania układów scalonych o dużej gęstości upakowania</td>
</tr>
</tbody>
</table>
1. Wprowadzenie

o specyficznych parametrach, które muszą być dopasowane zarówno do źródła promieniowania, jak i do metody badawczej.

Szczególną rolę mają tutaj do spełnienia detektory pikselowe, które pozwalają na ekstrakcję użytecznej informacji z pomiarów parametrów i charakterystyk promieniowania jednocześnie w dwóch wymiarach przestrzennych. Dotychczas użycie sformułowania „detektory pikselowe” przywodziło natychmiast na myśl ich hybrydową formę. W tej formie detektor pikselowy jest zdobudowywany z dwóch niezależnych komponentów. Pierszym jest wielokanałowy, scalony układ odczytywot, a drugim detektor półprzewodnikowy. Obu elementy łączone są za pomocą specjalnie nakładanych metalowych pól kontaktowych. Przygotowanie elementów kontaktowych i późniejsze łączenie warstw zachodzi w osobnych procesach technologicznych przeprowadzanych po całkowitym wyprodukowaniu obydwu elementów składowych. Hybrydyzacja, w wielu przypadkach nieodzowna, np. przy łączeniu komponentów zdobudowywanych z materiałów heterogenicznych, jest skomplikowana, kosztowna i, mimo znaczących postępów w tej dziedzinie, uzysk w wielu przypadkach wciąż nie jest w pełni zadowalający.

1 Dla nazwania detektora bez układu odczytowego często używa się określenia „czujnik” (ang. sensor), jednakże w pracy tej, ze względu na różnice znaczeniowe, postanowiliśmy odwoływać się do sformułowania „detektor”, zaznaczając że jest on bez podłączonego układu odczytowego.

2 IReS–LEPSI – Laboratoire d’Electronique et Physique des Systèmes Instrumentaux – Institut de Recherches Subatomiques – laboratorium w Strasburgu we Francji (obecnie wchłonięte przez Instytut Pluridisciplinaire Hubert Curien), w którym rozpoczęłem moje prace nad detektorami pikselowymi.
w celu weryfikacji eksperymentalnej, pracuję nowym mikroskopem skaningowym, jak i w elektronowym mikroskopie transmiżnym. Elektronów pochodzić zdolnego rejestrować otrzymane w tym projekcie wyniki, zwrócić profil intensywność hadronowej. Elektrony przyspieszone i ogniskowane w polu elektrycznym odzwierciedlają zjawiska, które pokazują, że elektrony są przydatne do rozpoznania torów cząstek relatywistycznych w eksperymentach fizyki wysokich energii. Postanowiłem się skupić w tej monografii na zastosowaniach detektorów na potrzeby obrazowania z wykorzystaniem niskoenergetycznych elektronów i miękkiego promieniowania X. Głównymi różnicami między zastosowaniem detektorów pikselowych w fizyce wysokich energii a aplikacjami przedstawionymi w tej pracy są w przypadku tych drugich: praca bez synchronizacji z cyklami maszyny (ang. *trigger*), mniejsza amplituda sygnałów, pochłanianie energii promieniowania w warstwach przypowierzchniowych materiału, skąd sygnał musi zostać odzyskany, ekspozycja na chwilowe ogromne dawki promieniowania jonizującego.

Niniejsza praca zawiera zarówno szczegółowe opisy architektur zaawansowanych układów MAPS (MIMOSAV, MIMOTERA, seria układów MAMBO), których byłem pomysłodawcą i głównym projektantem, jak i przeprowadzone przeze mnie samodzielnie lub przy moim znaczącym współuczestnictwie testy w zakresie autoradiografii, mikroskopii elektronowej, obrazowania przy użyciu elektronów z emisji wtórnej pod wpływem wiązki hadronowej oraz promieniowania X pochodzącego ze źródeł radioaktywnych i emisji synchrotronowej. Przedstawione zagadnienia są częścią przedmiotu moich badań w okresie ostatniej dekady. Badania, które prowadziłem, obejmowały zarówno prace o charakterze eksperymentalnym, jak i projektowo–konstrukcyjne i zmierzały do wypracowania propozycji nowych architektur i ich optymalizacji, przy wykorzystaniu dostępnych możliwości technologicznych dla spełnienia wymogów docelowych aplikacji.

Jeszcze pracuję jako *post-doc* we Francji, nawiązalem niezbędne kontakty z partnerem przemysłowym i byłem bezpośrednio zaangażowany w budowę ściernego detektora, zdolnego rejestrować dwuwymiarowe obrazy, przy wykorzystaniu niskoenergetycznych elektronów pochodzących z emisji wtórnej, zachodzącej pod wpływem pierwotnej wiązki hadronowej. Elektrycz przyspieszane i ogniskowane w polu elektrycznym odzwierciedlają profil intensywności wiązki użytwej w hadronowej terapii nowotworów. Obserwując otrzymane w tym projekcie wyniki, zwróciłem uwagę na przydatność podobnie ściernego układu do bezpośredniego obrazowania z wykorzystaniem elektronów zarówno w elektronowym mikroskopie skaningowym, jak i w elektronowym mikroskopie transmisyjnym. W celu weryfikacji eksperymentalnej, pracuję już w BNL 3 w Upton w stanie Nowy Jork w USA, gdzie miałem do dyspozycji odpowiednią infrastrukturę i oprzyrządowanie pomiarowe, wykonałem testy i pomiary potwierdzające poczynione na wstępne założenia, dowożące przydatności monolitycznego detektora pikselowego jako nowego urządzenia do rejestracji obrazów w dynamicznej mikroskopii elektronowej. Blonia fotograficzna, będąca tradycyjnym medium w elektronowej mikroskopii transmisyjnej, nie jest odpowiednia dla badań, które wymagają akwizycji dużych ilości danych lub rejestracji szybkich, dynamicznych procesów. Jednakże ta technika utrwalania obrazów jest wciąż stosowana, gdyż nie istniała dla niej alternatywy. Jej zastąpienie przez kamery CCD nie było możliwe ze względu na ich nieprzydatność do detekcji bezpośredniej, spowodowaną ich niedospornością na zniszczenia radiacyjne. Moje prace należą do pierwszych, które pokazały, że blonę fotograficzną można zastąpić detektorami krzemowymi również w mikroskopii elektronowej. Znakiem zachodzących zmian w technikach obrazowania jest zupełne wyparcie błony fotomo-
graficznej pod koniec lat 90. przez fotografię cyfrową. Najpierw stosowane były elementy CCD, a potem specjalizowane do obrazowania w zakresie światła widzialnego detektery pikselowe, które nazywane są elementami APS (ang. *Active Pixel Sensors*). Okazało się, że podobnie jak w wysokiej jakości fotografii cyfrowej, również w mikroskopii elektronowej możliwe są zmiany. Moja praca pokazała, że detektor pikselowy, bazujący na ciele stałym, jest alternatywą dla błony fotograficznej do rejestracji obrazów w mikroskopii elektronowej i że na takie urządzenie jest duże zapotrzebowanie. Te badania stały się inspiracją dla wielu innych grup. W tym samym czasie, używając tego samego detektora, co w testach przy użyciu mikroskopów elektronowych, oraz korzystając z dostępności wiązki promieniowania X synchrontronu w BNL, postanowiłem sprawdzić przydatność monolitycznego detektora pikselowego do bezpośredniego obrazowania z wykorzystaniem niskoenergetycznego promieniowania X. Uzyskane pierwsze pozytywne wyniki oraz spostrzeżenia dotyczące wydajności detekcji promieniowania X skłoniły mnie do zwrócenia się w kierunku technologii Silicon–on–Insulator (SOI) i poprzez kolaborację SOIPIX, uformowaną wokół japońskiego laboratorium KEK, rozpoczęłem prace nad nową rodziną układów monolitycznych wykorzystujących wysokorezystywne podłoże. Była to seria układów MAMBO, które rozwijałem wraz z osobami z mojego zespołu i współpracownikami po rozpoczęciu pracy we FNAL.4

Niniejsza monografia opisuje wyniki moich badań związanych z rozwojem detektórow MAPS w przeznaczeniu do obrazowania z wykorzystaniem niskoenergetycznych elektronów i fotonów niskoenergeticznego promieniowania X. Składa się na nią 11 rozdziałów. Rozdział drugi zawiera podstawowy materiał dotyczący oddziaływania promieniowania z materią, ze szczególnym uwzględnieniem natury i zakresu energetycznego, którym poświęcona jest ta monografia, oraz generacji sygnałów elektrycznych pod wpływem tego promieniowania. Rozdział ten umiejscowia resztę monografii w odpowiednim kontekście i zawiera elementy ułatwiające zrozumienie tematu omawianego w pracy bez konieczności odwoływania się do rozbudowanej literatury.

4 FNAL – Fermi National Accelerator Laboratory – amerykańskie laboratorium rządowe, położone w Batavia w stanie Illinois w USA, nastawione głównie na badania z zakresu fizyki wysokich energii, gdzie pracowałem najpierw jako członek grupy mikroelektronicznej, a obecnie kieruję tą grupą. Ogólnie przyjętą nazwą dla Fermi National Accelerator Laboratory jest Fermilab.
piątym. W tym rozdziale również podane jest porównanie osiągów wersji oryginalnej układu z wersją ścienną aż do zaledwie grubości warstwy epitaksjonalnej. W nim także zaprezentowane zostały wyniki testów w mikroskopie skaningowym i transmisyjnym oraz wyniki autoradiografii próbek nasyconych trytem. Ten ostatni rodzaj detekcji jest szczególnie trudny do uzyskania z detektorami innymi niż ciekłe scyntyulatory ze względu na niewielki zakres penetracji cząstek β^- emitowanych przez rozpadające się atomy trytu.

Wersja ścienna układu MIMOSAV testowana była również przy użyciu wizji promieniowania X w NSLS (National Synchrotron Light Source) w BNL, co jest szczegółowo omówione w rozdziale szóstym.

Badania przeprowadzone nad kluczowymi detektoremami MAPS, mimo osiągnięcia bardzo zachęcających wyników, wykazały również niedoskonałości tej technologii do pewnych zadań. Dlatego swoje zainteresowania zwrócono w kierunku monolitycznych detektorów pikselowych realizowanych w zaadaptowanych technologii SOI, zmodyfikowanym pod kątem uzyskania monolitycznych struktur detektorowych, rozwinięciem rodziny detektorów MAMBO, w których zbiornik ładunku zachodzi w spolaryzowanej w zostawieniu cząstki aktywnej detektora. Ten zakres prac omówiony jest w rozdziale ósmym.

Rozdział dziesiąty zawiera omówienie przeprowadzonych prac i podsumowanie, natomiast ostatni rozdział, jedenasty, jest zakończeniem, w którym nakreślimy założenia technologii trójwymiarowej integracji oraz zawarłem podziękowania dla osób, których rada, i z którymi współpraca, przyczyniły się do osiągniętych wyników i pośrednio do powstania tej pracy. Zdecydowałem się na przywołanie w ostatnim rozdziale idei trójwymiarowej integracji w dziedzinie scalonych układów elektronicznych, ze względu na silne przekonanie, że, mimo iż technologia ta jest obecnie w bardzo wczesnej fazie rozwoju, jest to kierunek, który zostanie obrany do budowy pikselowych detektorów obrazujących w przyszłości.

2. Oddziaływanie promieniowania z materią i generacja ładunku elektrycznego w detektorze

Zasadniczo promieniowanie możemy podzielić na dwie grupy, tj. strumienie cząstek neutralnych i strumienie cząstek obdarzonych ładunkiem [1]. W przeciwieństwie do promieniowania składającego się z cząstek nieobdarzonych ładunkiem elektrycznym, np. neutronów i promieniowania γ/X, cząstki naładowane, do których możemy zaliczyć np. elektrony, protony i cząstki α, podlegają oddziaływaniom elektrostatycznym siły Coulomba. Po wejściu do ośrodka cząstka naładowana natychmiastowo oddziałuje z elektronami znajdującymi się w ośrodku, w którym się porusza. W wyniku zachodzenia tych oddziaływań, traci ona sukcesywnie na swojej drodze energię kinetyczną. Jeśli poruszająca się cząstka wcześniej nie opuści ośrodka, kolejne przekazy energii od niej do elektronów w ośrodku mogą doprowadzić do jej zupełnego zatrzymania. Rezultatem przekazu energii mogą być albo wzbudzone atomy, w których elektrony zostały podnieione na wyższe powłoki elektronowe w atomie, albo porcje przekazanej energii mogą być wystarczające, aby generować pary jonów, tj. dodatnio naładowane unieruchomione atomy⁶ i elektrony mogące się poruszać w ośrodku. Cząstki naładowane mogą również oddziaływać bezpośrednio z jądrami atomowymi, ulegając efektem rozpraszania elastycznego Rutherforda lub wchodzić w reakcje jądrowe. Jednym z efektów towarzyszącym zmianom wektora prędkości przelatującej lekkiej cząstki naładowanej, np. elektronu w ośrodku, jest również wypromieniowanie części energii w postaci fotonów. W przypadku cząstek neutralnych przekaz

⁶ W ośrodku gazowym zjonizowane atomy są swobodne i poruszają się jednak ich ruch jest dużo wolniejszy od elektronów.
energii może zachodzić w procesach, w których albo całkowita energia padającej cząstki lub jednorazowo jej znacząca część są pochłaniane przez atom i dochodzi do emisji cząstek wtórnych lub nawet przemieszczenia się atomu, albo dochodzi do reakcji jądrowych skutkujących trwałą przemianą materiału ośrodka. Przemiany jądrowe są charakterystyczne dla oddziaływania neutronów, które nie pozostawiają śladu na przebytej drodze. W wyniku reakcji jądrowych mogą za to powstawać cząstki naładowane, których detekcja może być pośrednio używana do śledzenia neutronów. Absorpcji fotonów przez atom, pod warunkiem, że ma on odpowiednio wysoką energię, towarzyszy emisja ze wzbudzonego atomu cząstek wtórnych lub nawet przemieszczenia się atomu, albo dochodzi do reakcji jądrowych skutkujących trwałą przemianą materiału ośrodka. Przemiany jądrowe są charakterystyczne dla przeszkoku energetycznego, jaki był udziałem elektronu powracającego ze stanu wzbudzonego na bardziej wewnętrzny orbital w atomie.

Niniejszy rozdział zawiera krótkie wprowadzenie do opisu strat energii przez cząstki przechodzące przez ośrodek oraz zasięgu tych cząstek w ośrodku. Wprowadzenie to uznanego za pomocne ze względu na materiał zawarty w kolejnych rozdziałach pracy, tj. przedstawienie opisu konstrukcji detektorów, zakresu i przebiegu testów oraz na prezentację osiągniętych wyników, o czym jest mowa w następnych rozdziałach.

W związku z zakresem niniejszej monografii, skoncentrowanym głównie na detekcji i obrazowaniu przy użyciu elektronów oraz fotonów, wprowadzenie traktuje marginalnie inne rodzaje promieniowania. Uwzględniono jedynie dodatkowo promieniowanie cząstek α z powodu wykorzystania źródła tego promieniowania do charakteryzacji jednego z omawianych detektorów. Obszerny opis zagadnień oddziaływania promieniowania z materią jest dostępnmy w szerokiej bibliografii, np. publikowanej przez Particle Data Group [2].

2.1. Cząstki jonizujące – straty energii i zasięg

Straty energii przez cząstkę naładowaną przechodzącą przez ośrodek mogą być rozdzielone na dwie składowe z uwagi na typ mechanizmu przekazywania energii. Pierwszym mechanizmem są procesy zderzeń, drugim radiacyjne straty energii. Wobec tego całkowite straty energii na jednostkowej długości toru cząstki (ang. stopping power) wyrażają się następującą zależnością:

\[
\frac{dE}{dx} = \left(\frac{dE}{dx} \right)_{\text{col}} + \left(\frac{dE}{dx} \right)_{\text{rad}},
\]

gdzie:

- \(\left(\frac{dE}{dx} \right)_{\text{col}} \) – straty energii związane z oddziaływaniem za pośrednictwem siły Coulomba z elektronami ośrodka (jonizacja i wzbudzenie),
- \(\left(\frac{dE}{dx} \right)_{\text{rad}} \) – straty energii związane z emisją promieniowania hamowania (Bremsstrahlung, Čerenkov) oraz reakcjami jądrowymi.

Wzbudzenie jest procesem przenoszącym elektron na wyższy poziom (powłokę) energii w atomie. Jonizacja polega na zupełnym oderwaniu elektronu od atomu, elektron taki staje się elektronem swobodnym. W przypadku materiału półprzewodnikowego mówi się

Radiacyjne straty energii w zakresie energii promieniowania rozważanym w pracy są zupełnie do pominięcia. Wyjątkiem jest wypromieniowywanie energii przez elektrony hamujące w ośrodku (bremsstrahlung), które leży między innymi u podstaw działania lamp generujących promieniowanie X. Warto jednak zaznaczyć, że sprawność energetyczna generacji promieniowania X jest niewielka. Z reguły jest ona znacznie poniżej 1%, gdyż większość energii elektronów uderzających w katodę lampy powoduje jonizację, a następnie energia jest rozpraszana w postaci ciepła.

Wielkość $(dE/dx)_{el}$ jest bardzo często nazywana liniową stratą energii (ang. Linear Energy Transfer – LET). Ścisłe mówiąc, chodzi tutaj o uśrednione liniowe straty energii (dE/dx) cząstki naładowanej przekazane na jonizację atomów ośrodka i wzbudzenie elektronów podane na jednostkę przepływu drogi. Niektóre źródła definiują LET jako straty energii na jednostkowy przyrost długości toru cząstki, inne źródła uzależniają LET od ośrodka, a ścisłe jego gęstości, tak że jednostką LET w drugim przypadku jest np. MeVcm2mg$^{-1}$.

Wielkością, która mówi o liczbie jonów, które są produkowane przez naładowaną cząstkę poruszającą się w danym ośrodku na jednostkowej długości toru, jest efektywność jonizacji, która jest zdefiniowana następująco:

$$\varepsilon_i = \frac{dE/dx}{w}, \quad (2.2)$$

gdzie: w – średnia energia potrzebna na generację pary jonów (w przypadku materiału półprzewodnikowego mówi się o liczbie produkowanych par elektron–dziura).

Energia potrzebna do generacji pary e$^-$–h$^+$ zależy od rodzaju materiału, z którym cząstka naładowana wchodzi w oddziaływanie, i może być uważana za wielkość charakterystyczną dla danego materiału. W przypadku krzemu jest to około 3,6 eV, a dla dwutlenku krzemu wielkość ta wynosi około 17 eV [3].

7 Należy odróżnić jonizację wtórną zachodzącą w wyniku generacji i oddziaływania promieniowania elektronów delta od jonizacji uderzeniowej (ang. impact ionization) powstającej na skutek kolizji z elektronami nabywającymi wystarczająco wysokiej energii w wyniku przyspieszania w polu elektrycznym obecnym w odpowiednio spolaryzowanym ośrodku.
2.2. Oddziaływanie elektronów (promieniowania β)

Elektrony przelatujące przez ośrodek bardzo łatwo ulegają rozpraszaniu. Spowodowane jest to przez małą masę i ładunek elektryczny elektronu. Trajektoria przelatujących elektronów nie jest linią prostą i ma liczne zakrzywienia i odbicia, przy czym istnieje silna zależność stopnia rozpraszania od energii elektronu. Straty energii poruszającego się elektronu, związane z oddziaływaniem kulombowskim z elektronami ośrodka, wliczając jonizację i wzbudzenie, wyrażają się następującą zależnością [1][3]:

\[
\left(\frac{dE}{dx}\right)_{\text{col}} = \frac{2\pi q^4 N Z q}{m e} \ln \left(\frac{m e^2 v}{2 l^2 (1 - \beta^2)}\right) - \left(2\sqrt{1 - \beta^2} - 1 + \beta^2\right) \ln 2 + (1 - \beta^2) + \left(\frac{1 - \sqrt{1 - \beta^2}}{8}\right),
\]

gdzie:
- \(q \) – ładunek elektronu (1,6×10^{-19} C),
- \(N \) – liczba atomów ośrodka w 1 cm³,
- \(Z \) – liczba atomowa (dla Si \(Z = 14 \)),
- \(m_e \) – masa spoczynkowa elektronu (9,11×10^{-28} kg),
- \(\nu \) – prędkość elektronu (m/s),
- \(l \) – średnia energia wzbudzenia (dla Si \(l = 173 \) eV),
- \(\beta \) – względna prędkość elektronu (\(\nu / c \)).

Inną formą, w jakiej może tracić energię poruszający się elektron, są straty energii poprzez emisję promieniowania związanego ze zmianą prędkości elektronu. Te radiacyjne straty energii wyrażają się następującą zależnością [1][3]:

\[
\left(\frac{dE}{dx}\right)_{\text{rad}} = \frac{N E Z (Z + 1) q^4}{137 m_e^2 c^4} \left(4 \ln\left(\frac{2 E}{m_e c^2}\right) - \frac{4}{3}\right),
\]

gdzie:
- \(c \) – prędkość światła (3×10⁸ m/s).

Pozostałe symbole mają znaczenie jak we wzorze (2.3).

Straty energii poruszającego się elektronu poprzez wypromieniowywanie energii nabierają dużego znaczenia dopiero przy wysokich energiach elektronu oraz dla ośrodków o dużych liczbach atomowych.

Zdolność generacji promieniowania wtórnego przez zmieniający swoją prędkość elektron są wykorzystywane w generacji promieniowania X, którego detekcja jest opisana w dalszych rozdziałach tej pracy.

Stosunk straat energii elektronu w wyniku promieniowania do strat energii w zderzeniach określa się następującą przybliżoną zależnością:
\[
\frac{(dE/dx)_{\text{rad}}}{(dE/dx)_{\text{col}}} \approx \frac{EZ}{700 \times 10^5}.
\] (2.5)

W przypadku elektronów pochodzących ze źródeł promieniowania \(\beta\), używanych w mikroskopie elektronowym czy elektronów wtórnych pochodzących z oddziaływań promieniowania \(\gamma\) z materią, energie zazwyczaj nie przekraczają granicy megaelektronowolta. Liniowa strata energii przez poruszający się elektron z wyszczególnieniem składowej zderzeniowej i radiacyjnej jest pokazana na Rys. 2.1 [4]. Jak można zauważyć, korzystając z tego rysunku, straty energii spowodowane przez zderzenia znacznie dominują nad stratami radiacyjnymi w całym zakresie energii elektronów używanych w eksperymentach opisanych w dalszych rozdziałach tej pracy.

Rys. 2.1 Liniowa strata energii przez poruszający się elektron w krzemie [4].

Jak widać z Rys. 2.1, w zakresie energii elektronu, stanowiących obiekt zainteresowania niniejszej pracy, straty energii na jednostkę długości toru wzrastają wraz ze zmniejszającą się energią elektronu. Oczywiście jest spostrzeżenie, że całkowita energia, bez żadnych strat wewnętrznych, jest deponowana w ośrodku detektora przez elektron, jeśli dojdzie do jego zupełnego zatrzymania. Istotną wielkością jest maksymalny zasięg, \(R_{\text{max}}\), elektronów przemieszczających się w ośrodku, który można wyliczyć z następującego wzoru empirycznego [2]:

\[
R_{\text{max}}(\text{g/cm}^2) = \begin{cases}
0,412E_{\text{in}}^{1.265-0.0954\ln E_{\text{in}}} & \text{0,01} \leq E_{\text{in}} \leq 2,5 \text{ MeV} \\
0,530E_{\text{in}} - 0,106 & \text{E}_{\text{in}} > 2,5 \text{ MeV}
\end{cases},
\] (2.6)

gdzie \(E_{\text{in}}\) – energia elektronu przy wejściu do ośrodka.

Procesy oddziaływania promieniowania z materią podlegają prawom statystycznym, dlatego w celu określenia odpowiedzi detektora czy też przeprowadzenia prac optymalizacyj-
nych jego konstrukcji konieczne jest wykonanie symulacji. Temu celowi służą odpowiednie programy komputerowe łączące modele zjawisk fizycznych, bazujące częstokroć na skomplikowanym formalizmie matematycznym, z metodami numerycznymi.

W szczególności zachowanie elektronów w ośrodku może być symulowane przy użyciu metody Monte Carlo. Jednym z dostępnych narzędzi jest program CASINO [5], który był wykorzystywany na potrzeby niniejszej pracy. Dla przykładu, na Rys. 2.2 przedstawione jest porównanie znormalizowanych rozkładów zasięgu elektronów w krzemiu dla wejściowej energii elektronów 20 keV i 100 keV otrzymanych w symulacji przy użyciu programu CASINO. Z wykresów, zamieszczonych na tych rysunkach, można odczytać, że dla elektronów o energii 20 keV najbardziej prawdopodobny zasięg to około 2 μm, podczas gdy dla elektronów o energii 100 keV, a więc zaledwie pięciokrotnie wyższej, ten najbardziej prawdopodobny zasięg wynosi już ponad 40 μm. Różnica ta ma istotne znaczenie dla konstrukcji detektora, w szczególności dla doboru struktury i grubości okna wejściowego, celem osiągnięcia czułości detektora w rozważanym zakresie energii.

Rys. 2.2 Porównanie znormalizowanych rozkładów zasięgu elektronów w krzemiu dla wejściowej energii elektronów 20 keV a) i 100 keV b).

2.3. Oddziaływanie promieniowania α

Cząstki α emitowane ze źródeł radioaktywnych, ze względu na swoją dużą masę, są w stanie przelatywać jedynie krótkie odległości. Zasięg cząstek α w powietrzu nie przekracza typowo kilku centymetrów i może być wyliczony z następującej przybliżonej zależności [6]:

$$R_{\text{max}}(\text{cm}) = \begin{cases} 0,56E_{\text{αin}} & \text{E}_{\text{αin}} \leq 4 \text{ MeV} \\ 1,24E_{\text{αin}} - 2,62 & 4 < \text{E}_{\text{αin}} < 8 \text{ MeV} \end{cases}$$

gdzie $E_{\text{αin}}$ – początkowa energia cząstki α (MeV).

Wartość R_{max} wyliczana ze wzoru (2.7), obowiązuje dla temperatury 15°C i ciśnienia normalnego.

Zasięg cząstek α w ośrodku innym niż powietrze może być wyliczony na podstawie następującego wyrażenia ogólnego:
\[R_{\text{max}} = \frac{0.00056 A^{1/3}}{\rho} R_{\text{max}\text{air}} \]

gdzie:

\[A \quad – \quad \text{masa atomowa materiału ośrodka}, \]
\[\rho \quad – \quad \text{gęstość materiału ośrodka (g/cm}^3\text{)}, \]
\[R_{\text{max}\text{air}} \quad – \quad \text{zasięg cząstki } \alpha \text{ w powietrzu (cm)}. \]

Można łatwo zauważyć, że w przypadku materiału o dużej gęstości, jakim jest np. detektor krzemowy, zasięg cząstek \(\alpha \) staje się bardzo mały. Detekcja cząstek \(\alpha \) jest możliwa, jeśli okno wejściowe detektora jest odpowiednio cienkie. Cząstki \(\alpha \) pochodzące ze źródeł radioaktywnych mają zazwyczaj wysoką energię kinetyczną, wynoszącą typowo wiele megaelektronowoltów. Dlatego oddziaływanie cząstek \(\alpha \) z materiałem detektora prowadzi do uwalniania znaczącej liczby nośników ładunku.

2.4. Oddziaływanie fotonów (promieniowania \(\gamma \))

Fizyczne procesy prowadzące do detekcji fotonów są inne niż w przypadku cząstek obdarzonych masą i ładunkiem elektrycznym. Oddziaływanie fotonów z materią zachodzi poprzez kilka różnych procesów, których przekroje czynne zależą od energii fotonu. Do procesów tych zalicza się efekt fotoelektryczny, rozpraszanie Rayleigha, rozpraszanie Coulomba oraz produkcję par e+–e−. Procesy te prowadzą do częściowej lub całkowitej absorpcji energii fotonu. Padający foton odpowiednio zniknie albo ulegnie rozproszeniu.

Prawdopodobieństwo zajścia rozważanego procesu w funkcji energii padającego fotonu w danym materiale jest odzwierciedlone przez przekrój czynny. Przekroje czynne na oddziaływanie fotonów w krzemiu są pokazane na wykresach na Rys. 2.3 [4] (1 barn = 10^{-24} \text{ cm}^2). Jak można odczytać z tego rysunku, efekt fotoelektryczny jest procesem dominującym w zakresie miękkiego promieniowania X. Traci on znaczenie na rzecz rozpraszania Comptona dopiero dla energii fotonów powyżej 100 keV. W przypadku efektu fotoelektrycznego padający foton zniknie. Jego energia przechodzi do elektronu. Gdy wzbudzony elektron zostaje wyrwany z powłoki elektronowej atomu, staje się elektronem swobodnym. Energia kinetyczna elektronu jest różnicą pomiędzy energią fotonu a energią wiązania elektronu na danej powłoce elektronowej w atomie. Dla elektronu swobodnego różnica ta jest wartością większą od 0 i uwolniony elektron może powodować dalszą jonizację w ośrodku wzdłuż toru swojego przemieszczania. Jeśli elektron nie opuści ośrodka, to energia zdeponowana w detektorze odpowiada energii fotonu. W konsekwencji liczba wygenerowanych nośników swobodnych jest proporcjonalna do energii fotonu. Ta właściwość efektu fotoelektrycznego jest często wykorzystywana do kalibracji wzmocnienia detektorów [7]. Wyliczenie współczynnika konwersji ładunku na sygnał wyjściowy (ang. Charge-to-Voltage conversion Factor – CVF) jest możliwe, gdy znana jest wartość energii wymaganej do wytworzenia jednej pary \(e^-\text{–}h^+ \). Wyliczenie współczynnika konwersji może być utrudnione przez tak zwane fotony ucieczki (ang. escape photons). Są to fotony fluorescen-
cji, emitowane po wyrzuceniu elektronu z głębszych powłok w atomie, typowo z powłok K lub L, na powłoki o wyższych stanach energetycznych lub do pasa przewodnictwa. W takim przypadku padający foton generuje nieobsadzony stan na jednej z głębszych powłok. Stan ten może być zajęty przez inny elektron z zewnętrznych orbitali w atomie, który powraca do stanu spoczynkowego. W wyniku tego przekształcenia następuje emisja fotonu o charakterystycznej długości fali dla danego przejścia w danym materiale. Emitowane fotony mogą opuścić objętość detektora, prowadząc do zmniejszenia efektywnej rejestrowanej energii, zdeponowanej w detektorze przez foton padający pierwotnie na detektor. Zatem, mogą one być przyczyną błędnej kalibracji. Jednakże statystyczny udział fotonów ucieczki jest zazwyczaj nieznaczną.

Przekrój czynny na efekt fotoelektryczny silnie zależy od liczby atomowej materiału ośrodka $\propto Z^\alpha$.

![Rys. 2.3 Przekroje czynne na oddziaływanie fotonów z krzemem w funkcji energii fotonów [4].](image)

Proces produkcji par polega na zamianie padającego fotonu na parę elektron/pozyton ($e^-\rightarrow e^+$). W związku z koniecznością respektowania zasady zachowania pędu proces generacji par może zajść jedynie w obecności innego obiektu, którym jest najczęściej jądro atomu. Energia padającego fotonu musi przewyższać dwukrotnie energię spoczynkową elektronu, tzn. musi wynosić przynajmniej 1,02 MeV.
2.5. Absorpcja promieniowania X

Wiązka fotonów o intensywności \(I \), przechodząca przez ośrodek, ulega osłabieniu zgodnie z zależnością:

\[
I = I_0 e^{-\mu \rho d},
\]

gdzie:

- \(I_0 \) – początkowa intensywność wiązki fotonów,
- \(\mu \) – masowy współczynnik absorpcji (cm\(^2\)/g),
- \(\rho \) – gęstość ośrodka (g/cm\(^3\)),
- \(d \) – grubość warstwy ośrodka.

Stopień, w jakim promieniowanie X jest osłabiane przy przejściu przez ośrodek dla danej energii fotonów, określa się, wprowadzając masowy współczynnik absorpcji. Współczynnik absorpcji promieniowania jest parametrem charakteryzującym ośrodek i zależy od energii fotonów. Absorpcja fotonów w ośrodku silnie maleje wraz z rosnącą energią fotonów. Materia detektora musi być dobrany w taki sposób, aby jego gęstość gwarantowała silną absorpcję i jednocześnie, aby energia jonizacji była odpowiednio niska celem uzyskania odpowiednio wysokiego stosunku sygnału do szumu. Materiały, których przykładem jest krzem, dające silne sygnały wynikające z niskiej średniej energii jonizacji, mają częstokroć niewielkie gęstości. Zatem, aby zapewnić wysoką wydajność detekcji, konieczna jest kompensacja niskiego współczynnika absorpcji odpowiednią grubością detektora. Grubość detektora musi być odpowiednio dobrana, tak aby zapewnić możliwie jak najpełniejsze pochłanianie fotonów X z interesującego zakresu energii, np. używanego do obrazowania. Wydajność detekcji w funkcji energii padającego fotonu dla krzemu dla różnych grubości ośrodka jest przedstawiona na Rys. 2.4. Krzywe, przedstawione na tym rysunku, obrazują zależności teoretyczne uwzględniające efekt fotoelektryczny i rozpraszanie Comptona [4].

W przypadku używania detektorów, których grubość jest mniejsza od maksymalnej głębokości, na jaką mogą dotrzeć fotony z wiązki, jedynie część fotonów uczestniczy w wytworzeniu obrazu (radiogramu, obrazu dyfrakcyjnego itp.). W celu otrzymywania żądanego poziomu intensywności wiązki musi być podwyższona, co wymaga zrodła o większej jasności. Wiązać się to może z większymi dawkami promieniowania, jakie musi przyjąć obiekt, który jest eksponowany na promieniowanie, oraz może prowadzić do zniszczeń radiacyjnych w innych częścach systemu detekcyjnego, np. w elektronicznych układach odczytowych.

Taka forma detektorów monolitycznych również znalazła się w kręgu moich zainteresowań i badań, a prace nad ich rozwojem zostały też opisane w tej monografii.

Rys. 2.4 Wydajność detekcji w funkcji energii padającego fotonu dla krzemu dla różnych grubości ośrodka [4].
3. Detektory MAPS – wprowadzenie

Detektory krzemowe znalazły zastosowanie na wielu polach badań fizyki eksperymentalnej. Zakres ich zastosowań rozciąga się od fizyki jądrowej i cząstek elementarnych, po astrofizykę, krystalografię, fizykę medyczną dla śledzenia torów (ang. tracking), obrazowania, pomiarów mechanicznej zbieżności itp. Detektory wierzchołka umożliwiły studia z zakresu badań wymagających pomiarów drgań cząstek pierwotnych rozchodzących się z punktu oddziaływania wewnątrz rury akceleratora i ulegających rozpadom w odległościach zaledwie od kilkudziesięciu mikrometrów do kilkuset milimetrów od tego punktu. Detektory wierzchołka są stosowane w eksperymentach na zderzaczach (ang. collider) i ze stałą tarczą (ang. fixed target). Detektory te umożliwiły badania i fundamentalne odkrycia w badaniach ciężkich kwarków, łamania symetrii ładunku i parzystości, czy ostatnio w odkryciu bozonu Higgsa. W konstrukcji detektora wierzchołka stosuje się obecnie detektory krzemowe. Jako pierwsze w budowie detektora śledzących tory cząstek i w konstrukcji detektora wierzchołka używane były detektory mikropaskowe (ang. microstrip detectors) [8]. Jednak wymagania co do bardzo dużej dokładności i jednoznaczności określania torów, tzn. rekonstrukcji bez dodatkowych, fałszywych ładunków wynikających z braku pełnej informacji dwuwymiarowej, szybko rosły. Fakt ten zdecydował o powołaniu nowej technologii detektora, tj. detektora pikselowego w śledzeniu cząstek.

Względnie wcześnie, bo już na początku lat 80. ubiegłego wieku zostały wdrożone elementy CCD (ang. Charge Coupled Devices) [9], które niespełniały 10 lat później doczekały się konkurencji w postaci hybrydowych detektora pikselowych (ang. Hybrid Pixel Detectors) [10]. Szczególnie te ostatnie wykazują się osiągami, które wprowadziły rewolucyjną zmianę i wszystkie obecne eksperymenty zawierają w swojej konstrukcji mniej lub bardziej rozbudowane zespoły hybrydowych detektora pikselowych. Jednakże okazało się, że dla potrzeb przyszłych eksperymentów, jak np. planowanego zderzacza leptonów8, wymaga detektora o jeszcze lepszych parametrach, które są trudne do osiągnięcia w przypadku detektora HPD i CCD. Bez przelomowych zmian w ich formie, odpowiednio znacznie grubości i niewystarczająca zdolność rozdzielcza dla pomiarów położenia cząstek w przestrzeni będą głównymi przeszkodami w przyszłych zastosowaniach tych detektorów.

Zarówno technologia elementów CCD, jak i pikselowych detektora hybrydowych musiała zostać znacząco ulepszoną, aby stać się w pełni atrakcyjnymi dla przyszłych eksperymentów. Alternatywnym podejściem mogłoby być połączenie dobrych cech obydwu technologii w nowym typie detektora pikselowego. I rzeczywiście, podobnie jak to się stało wcześniej w przypadku elementów CCD, które pierwotnie były wymysłone dla obrazowa-

8 Przykładem jednego z rozważanych projektów zderzaca leptonów jest ILC, który jest maszyną e⁺e⁻, w której są przyspieszane i są poddawane zderzenion wiązki elektronów i pozytonów.
nia przy użyciu światła widzialnego w kamerach i aparatach fotograficznych, uwaga została zwrócona na monolityczne detektory pikselowe realizowane w technologii scalonej CMOS, które to około połowy lat 90. ubiegłego wieku zostały zaproponowane, jako konkurencja dla elementów CCD w dziedzinie fotografii i techniki wizyjnej [11]. Struktury warstwowe o różnym stopniu domieszkowania są naturalnie stosowane w nowoczesnych procesach. Przez użycie tych struktur oraz przy wykorzystaniu studni typu N do zbierania ładunku [12] wydawało się możliwe skonstruowanie urządzenia detektorowego, które byłoby czułe na inne rodzaje promieniowania niż światło widzialne. W szczególności chodzi o skonstruowanie urządzenia, które umożliwiłoby w pełni wydajne śledzenie torów cząstek rozchodzących się z punktu zderzenia i pomiar tych torów z wysoką rozdzielczością przestrzenną.

Tematem moich zainteresowań [13][14][15], które zaowocowały wcześniej pracą doktorską [16], było udowodnienie, że jest to możliwe. Osiągnąłem ten cel przez symulację komputerową struktur półprzewodnikowych, budowę pierwszych optymalizowanych do detekcji cząstek jonizujących układów detektorowych oraz intensywne testy i pomiary parametrów tych nowych urządzeń, które zostały nazwane MAPS (ang. Monolithic Active Pixel Sensors). Wykazałem, że detektory MAPS oferują wysoką rozdzielczość przestrzenną i mogą być ściśnięte jak elementy CCD, ale oferują znacząco poprawę w zakresie odporności na promieniowanie, a także mogą być odczytywane równie szybko jak detektory hybrydowe. Praca z tego okresu wprowadziła detektory MAPS do użycia w instrumentacji dla fizyki jądrowej i fizyki wysokich energii.

3.1. Idea wczesnej wersji detektora MAPS

Detektory MAPS, zaproponowane przez mnie około dekady temu [16], oparte były na technologii wytwarzania układów scalonych bazującej na podwójnych studniach (ang. twin–well process) umieszczonych na niskodomieszkowanej warstwie epitaksjalnej o rezystywności około 10 Ωcm. Warstwa epitaksjalna, o niewielkiej grubości, naniesiona jest na grube i wysokodomieszkowane podłoże wafla (ang. wafer) krzemowego o rezystywności wynoszącej około 10 mΩcm. Taki proces podłożowy (ang. bulk process) zawiera wewnętrzną przestrzeń warstwy epitaksjalnej, która charakteryzuje się dobrą jakością materiału półprzewodnikowego, a co za tym idzie, odpowiednio długim czasem życia nośników. Warstwa epitaksjalna, przez różnice domieszkowania w stosunku do warstw sąsiednich, stanowi obszar, z którego uwolnione w procesie jonizacji nośniki nie mogą odpływać. Jak jest pokazane na Rys. 3.1, różnice w domieszkowaniu, sięgające trzech rzędów wielkości, powodują powstanie odbijających nośników barier potencjału na granicach pomiędzy warstwą epitaksjalną a podłożem oraz pomiędzy warstwą epitaksjalną a studnią typu P. Ze względu na preferowany przez przemysł mikroelektroniczny typ P wafla podłożowych nośników, które można zbierać, są elektryny, natomiast dziury są tracone. Zbieranie elektronów zachodzi przez studnie typu N, które, jak jest pokazane na Rys. 3.1, sięgają do warstwy epitaksjalnej. Jak łatwo można zauważyć, zastosowanie studni typu N do zbierania ładunku skutkuje tym, że nie można stosować żadnych dodatkowych studni typu N w obrębie piksela, aby np. umieścić w nich tranzystory PMOS. Dochodziłyby wtedy do pasożytniczego zbierania ładunku do tych dodatkowych studni, a więc miałyby miejsce straty już i tak słabych sygnałów. W konsekwencji tego w obrębie piksela możliwe jest używanie jedynie tranzystorów NMOS. Są one umieszczowane, jak jest to przedstawione na
Rys. 3.1, w studni typu P. Grubość warstwy epitaksjalnej jest krytyczna dla pracy detektora MAPS. Istniejące na rynku procesy zapewniają grubości tej warstwy dochodzące typowo do 20 μm. Istnieją również prace, które pokazują, że procesy pozbawione warstwy epitaksjonalnej, ale bazujące na niskodomieszkowanym podłożu, mogą być również przydatne do pomiaru torów cząstek [17]. W ujęciu ilościowym zbieranie ładunku w tej drugiej wersji detektorów MAPS zostało jednak określone jako dużo mniej przewidywalne. Jak wcześniej zostało zaznaczone, warstwa epitaksjonalna jest niskodomieszkowana, jednak nie jest to na tyle niski poziom domieszkowania, aby móc ją zubożyć w zakresie napięć typowo dostępnym w układzie scalonym. Istnieją również prace, które pokazują, że procesy pozbawione warstwy epitaksjonalnej, ale bazujące na niskodomieszkowanym podłożu, mogłyby być również przydatne do pomiaru torów cząstek [17].

Ze względu na brak tranzystorów PMOS w obrębie piksela układ wzmacniający ładunkowego musiał być bardzo prosty. W pierwszych realizacjach detektorów MAPS był on ograniczony do struktur bazujących na wtórniku źródłowym, a w nieco późniejszych strukturach zaproponowałem układy wzmacniające, oparte na systemie wspólnego źródła, zbudowane wyłącznie na tranzystorach NMOS [18]. To ostatnie podejście stało się podstawą docelowych detektorów MAPS, które zostały zbudowane na potrzeby eksperymentu STAR (ang. Solenoidal Tracker at RHIC) na akceleratorze RHIC (ang. Relativistic Heavy Ion Collider) w BNL [19][20][21].

Detektory MAPS są podobne w konstrukcji do systemów wizyjnych i rejestratorów obrazu używanych w cyfrowych, konsumenckich aparatach i kamerach wizyjnych. Jednak od detektorów do zastosowania w eksperymentach fizycznych, w których inne są własności sygnałów wejściowych, wymaga się pracy w zupełnie innych trybach. Konieczna jest optymalizacja, co prowadzi przede wszystkim do zupełnie innej konstrukcji systemu odczytowego. Sygnały są zazwyczaj w zakresie od kilkuset do kilku tysięcy elektronów w wyniku rejestracji pojedynczego zdarzenia oraz wymagana jest z reguły stu procentowa wydajność detekcji wraz z zapewnieniem takiej rejestracji zdarzeń, że możliwe jest ich jednoznaczne przypisanie do okien czasowych dyktowanych przez cykliczność przypadków zderzeń, np. wynikających z pracy maszyny–akceleratora. Dlatego w projektowanych układach, które nazywane były MIMOSA (ang. Minimum Ionizing MOS Active pixel sensor), zastosowano odczyt pełnych ramek, które następnie były odejmowane – podobnie jak
odejmuje się macierze o tych samych wymiarach. Odejmowanie ramek stanowi filtra\,cę, tzw. CDS (ang. Correlated Double Sampling) ze stałą czasową równą czasowi odczytu jednej pełnej ramki. W wyniku takiej operacji usuwana była również głowa składowa szumu, wynikająca z cyklicznego przywracania dodatniego napięcia polaryzacji (ang. reset) na płynającej elektrodzie studni typu N, do której docieraj\,ł ładunek rozpływający się w warstwie epitaksjalnej, tj. tzw. szum kT/C.

Uproszczony schemat blokowy pierwszego układu MIMOSA I, optymalizowanego do śledzenia cząstek, jest pokazany na Rys. 3.2. Układ ten składa\,ł się z matrycy pikseli i trzech rejestrów przesuwnych. Pierwszy rejestr wybiera kolejne rz\,ędy do zerowania (ang. reset), a pozostałe dwa rejesty słu\,żyły do przyłączania kolejnych pikseli do przesy\,łania ich poziomów napięć analogowych do wyjścia układu. Sygna\,ły z kolejnych pikseli poddawane były przetworzeniu na postaci cyfrowej i następnie były przesy\,łane do zapisu w układzie akwizycji danych. Odejmowanie ramek oraz zastosowanie dodatkowej filtracji umożliwi\,ło osi\,gnięcie ekwiwalentnego szumu przeniesionego na we\,jściu piksela wynoszącego zaled\,wie kilkana\,ść e\, przy częstotliwości zegara taktuj\,ącego odczyt piksela ustawianej typowo w zakresie od 10 do 20 MHz [16]. W oknie, w prawej górnej częś\,ci Rys. 3.2, pokazany jest schemat ideowy trój-tranzystorowej konfiguracji wzmacniacza znajduj\,ącego si\,ę w każdym pikselu. Tranzystor M_1 dokonuje resetu przywracającego polaryzacj\,ę zaporową na z\,łąc\,zu do warstwy epitaksjalnej, tranzystor M_2 stanowi wtórnik ź\,ród\,łowy, a tranzystor M_3 jest kluczem przyłączającym piksel do odczytu.

Rys. 3.2 Uproszczony schemat blokowy pierwszego układu optymalizowanego do śledzenia cząstek – układ MIMOSA I [13].

Wymiary pikseli wynosi\,ły typowo od (20×20) \(\mu\)m\(^2\) do (40×40) \(\mu\)m\(^2\). Ź\,ródło prądowe wtórnika, tranzystor M_{cur} wspólne dla całego układu, i kluc\,z przyłączający kolumny do linii odczytowej M_{col} znaj\,dują się poza matry\,cą pikseli.
3.2. Przykładowy detektor MAPS
zbudowany do pracy w eksperymencie fizycznym

Wykazanie teoretyczne i eksperymentalne przy użyciu zaprojektowanych i wykonanych względnie prostych struktur układów MAPS ich podstawowej przydatności do detekcji cząstek jonizujących na potrzeby eksperymentów fizyki wysokich energii stanowiło zakres mojego doktoratu. Później skupiłem się na eksploracji możliwości budowy bardziej skomplikowanych form układów MAPS. Obejmowało to budowę układów o dużych rozmiarach, czego wynikiem była MIMOSA V [15], tj. pierwszy układ MAPS zawierający liczbę pikseli wynoszącą 1×10^6 oraz zwiększenie stopnia przetwarzania informacji bezpośrednio na detektorze. Zaproponowałem najpierw metodę ciągłej polaryzacji diody zbierającej ładunek, a następnie pierwszy układ pozwalający na uzyskanie wzmocnienia sygnału napięciowego otrzymanego z konwersji zebranego ładunku. Wzmacniacz był zbudowany wyłiczenie z wykorzystaniem transzystorów NMOS [15]. W kolejnym kroku, we współpracy z inżynierami z CEA (fr. Commissariat à l’Energie Atomique), zaproponowałem szybki odczyt detektora MAPS przez wiele równoległych kanałów. Zostały też zaprojektowane odpowiednie struktury ukладowe szybkich i bardzo dokładnych dyskryminatorów pozwalają-jące na sprzężoną implementację CDS [18][20]. Osiągnięcie poprawnie pracującej sprzęż- towej implementacji CDS otworzyło drogę do osiąganych kolejno elementów funkcjonal- nych, takich jak: realizacja dyskryminacji sygnałów pochodzących od oddziaływań promieniowania z materiałem detektora, sprzężona realizacja rekonstrukcji grup pikseli zawie- rających sygnały fizyczne (ang. clusters) i selektywny odczyt tylko tych pikseli (grup pik- seli), które takie sygnały zawierają [22]. Połączenie wszystkich elementów, które zostały osiągnięte w kolejnych wspomnianych wcześniej krokach wraz z typowymi elementami spotykanymi w nowoczesnych układach scalonych, którymi są: programowalny przez interfejs JTAG układ kontroli odczytu i kontroli napięć prądów referencyjnych z przetwornikami cyfrowo-analogowymi, generator napięcia referencyjnego (ang. bandgap reference), układ logiki kierującej selekcją danych użytych i ich przepływem do części układowej kierującej dane do wyjścia, bufor pamięci wraz z układami zarządzającymi, pętle czasowe do synchronizacji odczytu, koder z kompresją i z korekcją błędów transmisji itp., pozwoliły w ostatnich latach grupie ze Strasburga we Francji zbudować docelowy detektor MAPS [21]. Urządzenie jest obecnie instalowane we wspomnianym wcześniej ekspery- mencie STAR. Plan funkcjonalny tego układu jest pokazany na Rys. 3.3. Układ daje odpo- wiedź cyfrową, zawiera system eliminacji pustych danych (ang. zero suppression) i pozwola- ła na przesyłanie danych z szybkością 320 Mbps. Układ pracuje z czasem akumulacji ładunku poniżej 200 μs i wirtualnie nie posiada czasu martwego. Przedstawiona końcowa postać detektora MAPS jest przykładem monolitycznego, rozbudowanego funkcjonalnie systemu mieszanego się na jednej kości układu scalonego (ang. System-on-Chip – SOC).

3.3. Ograniczenia i perspektywy
zastosowań detektorów MAPS
poza śledzeniem torów cząstek

W poprzednim podrozdziale została przedstawiona droga rozwoju detektora MAPS, któ- ry po raz pierwszy dla tego typu układów ma szansę stać się jednym z elementów systemu

34
dostarczającego dane z eksperymentu fizycznego STAR w BNL. Jest to układ do detekcji i śledzenia torów wysokoenergetycznych cząstek jonizujących, powstających w wyniku zderzeń jonów rozpędzonych do relatywistycznych prędkości. Użycie techniki MAPS w ważnym eksperymentie fizycznym jest krokiem potwierdzającym jej rozwój do odpowiedniego poziomu i wieńczącym pewien etap jej rozwoju.

Zagadnieniem wzbudzającym od początku duże zainteresowanie było wykorzystanie technologii detektorów MAPS w innych aplikacjach, poza ich pierwszoplanowym zakresem rozwoju. Umiejscowienie warstwy epitaksjalnej pomiędzy dwoma regionami nieczułymi na promieniowanie, z których to zwłaszcza podłoże jest szczególnie grube, nie stano-wiło przeszkody dla detekcji cząstek o energiach wynoszących dziesiątki lub więcej megaelektronowoltów. Powyżej tego progu energii niewielka grubość warstwy epitaksjalnej, poza potencjalnym problemem generacji zbyt słabych sygnałów, również nie jest przeszkodą, gdyż przelatująca cząstka uwalnia ładunek wzdłuż całej swojej drogi. Inaczej sytuacja przedstawia się, kiedy energia cząstek jest niewielka i z tego powodu nie mogą one osiągać zaprzebnej warstwy epitaksjalnej, aby uwalnić tam ładunek elektryczny. Z kolei w przypadku fotonów promieniowania X o odpowiednio wysokich energiach, grubość ośrodka jest zbyt mała, aby dać żadaną wydajność detekcji. W wypadku detekcji cząstek jonizujących o średnich i niskich energiach, jak np. elektrony w transmisyjnym mikroskopie elektronowym, wiadomo, że grubość detektora ma fundamentalne znaczenie dla rozdzielczości przestrzennej. Rozdzielczość pogarsza się w przypadku grubszego detektora ze względu na tor cząstki niebędący linią prostą z powodu rozpraszania. Jak można zauważyć, wymagania dotyczące detektora dla kilku przytoczonych aplikacji nie pokrywają się. Struktura detektora zoptymalizowana pod kątem detektora wierzchołka może nie być w pełni satysfakcjonująca dla innych zastosowań. Również jedna konstrukcja detektora może nie być wystarczająca dla spełnienia wszystkich wymagań.

Rys. 3.3 Plan funkcjonalny układu MAPS dla eksperymentu STAR [21].
Detektory MAPS są właściwie układami scalonymi i istnieje pewne spektrum możliwych kroków technologicznych pozwalających na adaptację struktury takiego detektora do potrzeb aplikacji. Adaptacja taka jest również możliwa jako zastosowanie dodatkowych kroków technologicznych na pełnych płytach krzemowych – waflach już po zakończeniu pełnego procesu dla wytworzenia układów scalonych. Aby jednak decydować się na głębszą eksplorację danego kierunku rozwoju detektorów, konieczne jest uprzednie wykazanie podstawowej przydatności klasy detektorów MAPS do zamierzonych potrzeb. Celem badań przedstawionych w tej pracy są właśnie analizy zastosowań komplementarnych do aplikacji w fizyce wysokich energii. W pierwszych krokach posłużono się detektorem MIMOSA V, którego struktura została tak zaprojektowana, aby przez swoją uniwersalność umożliwić wykonanie wielokierunkowych badań. Pozwoliło to na osiągnięcie wyników w fazach demonstracyjnych, by wyznaczyć wymagane kierunki dla późniejszych projektów, albo by w następnych krokach w pełni zaprojektować nowe struktury detektorów MAPS.

Główne ograniczenia klasyfikujących detektorów MAPS polegają na zbieraniu ładunku z warstwy epitaksjalnej zachodzącej dominującą przez dyfuzję termiczną oraz na braku możliwości używania obydwu typów tranzystorów w obrębie piksela. Ograniczenia te od początku były postrzegane jako główna bariera uniemożliwiająca zastosowanie detektorów MAPS do niektórych grup aplikacji. Dlatego w późniejszych etapach pracy skoncentrowałem również swoją uwagę na monolitycznych detektorach pikselowych realizowanych przy wykorzystaniu technologii, w których wypracowano i wprowadzono dodatkowe kroki technologiczne, skutkujące poprawą parametrów funkcjonalnych i poszerzeniem spektrum możliwych zastosowań tych detektorów.
4. MIMOSA V – detektor MAPS używany w fazie demonstracji

Układ MIMOSA V został zaprojektowany w części prac kończących przygotowywanie materiału do doktoratu opisującego nową generację detektorów typu aktywne piksele do detekcji cząstek jonizujących. Układ MIMOSA V był wyprodukowany już po obronie pracy doktorskiej i jego testy, jak i dalsze użycie tego detektora, nie były wpisane ani w zakres, ani czas przewidziany na doktorat. Projekt tego układu wyraźnie z powodu zagospodarowania wcześniej otrzymanych doświadczeń ze stworzonych prototypów MAPS, był zbudowany jako pierwszy, możliwie najbardziej uniwersalny układ o dużym formacie, który był przypisany do uzyskania pokrycia geometrycznego odpowiedniego pełnemu przekrojowi wiązki testowej z akceleratora. MIMOSA V posiadał również rozmiar matrycy, na którą składa się cała liczba pikseli, pozwalającą na pomiary o wysokiej rozdzielczości. Koniecznym wymienianym częścią projektu było przekraczanie 1 cm². Głównym przeznaczeniem urządzenia była fizyka wysokich energii, a także sprawdzenie, czy i w jaki sposób, parametry małych wcześniej otrzymanych prototypów MAPS mogą być przeniesione na prototyp o dużych rozmiarach. Układ MIMOSA V był w tym celu intensywnie testowany na wiązce wysokoenergetycznych pionów w CERN-ie. Osiągnięte wyniki okazały się pozytywne, tj. zarówno szum, wydajność detekcji, jak i odsetek pikseli wykazujących wadliwe działanie, dzięki starannemu wykonaniu projektu, były w zakresie wartości, jakie otrzymywano dla prototypów o niewielkich rozmiarach, które poprzedzały projekt układu MIMOSA V.

Dostępność układu MIMOSA V, wykonanego w ramach dedykowanego procesu produkcyjnego (ang. engineering run), zainspirowała mnie do jego wykorzystania poza fizyką wysokich energii. Dostępność w dużej mierze z wpływem zwiększenia możliwości i precyzji cienienia, które nie mogły być wykonane na mniejszych układałach scalonych. Takie cienianie układał obrażających, aż do osiągnięcia warstwy epitaksjalnej, było pierwszym na świecie podejściem dla detektorów MAPS. Wyniki, uzyskane w tej pracy, zostały osiągnięte przez mnie wspólnie z partnerem przemysłowym pracującym nad zagadnieniem cieniania dla elementów CCD.

4.1. Motywacja do badań nad wersją detektora MIMOSA V zmodyfikowaną przez cienianie

Bezpośrednim stymulatorem wykorzystania detektorów MAPS do obrazowania nisko- i średnioenergetycznych elektronów było zawnioskowanie nowatorskie
idei systemu monitorowania wiązki hadronowej na potrzeby terapii w chorobach nowotworowych. Budowa tego systemu monitorowania była tematem projektu SUCIMA, finansowanego przez Unię Europejską⁹ w ramach piątego programu ramowego. Projekt zakończył się na przełomie lat 2004 i 2005 [23]. W programie tym pracowałem jako osoba odpowiedzialna za projekt i budowę dedykowanego układu MAPS, zapewniającego detekcję elektronów o energiach nieprzekraczających 30 keV.

Znajomość takich parametrów, jak przestrzenny profil wiązki, czasowe zmiany intensywności w obrębie tego profilu, jest niezbędna i pozwala na sterowanie procesem niszczenia komórek rakowych. Terapia hadronowa stosowana jest najczęściej do niszczenia tkanki rakowej w miejscach, gdzie interwencja chirurgiczna jest utrudniona, ale również tam, gdzie naświetlanie promieniowaniem X, poprzez naturę absorpcji tego promieniowania, spowodowało zniszczenia we wrażliwych tkankach otaczających. Dotyczy to nowotworów mózgu, oka itp. W celu zapewnienia skuteczności terapii, ale również w dalszości o minimalizację całkowitej dawki promieniowania, jaką otrzymuje pacjent, konieczne jest dostarczenie tej dawki zgodnie z wcześniejszym zaprogramowanym schematem. Schemat taki ustała się na podstawie uprzedniego rozpoznania medycznego oraz symulacji komputerowej. Symulacja ta pozwala na zaprogramowanie energii wiązki, typowo protonów lub jonów ¹²C⁶⁺, oraz sterowanie intensywnością wiązki i miejscem naświetlania dla uzyskania pożądanego efektu. Warunkiem trudnym do spełnienia jest konieczność praktycznie zupełnego wyeliminowania zakłóceń wiązki, wynikających z używania systemu monitorującego. Trudność ta powodowała, że systemy używane do tej pory pozwalały na określanie parametrów wiązki jedynie przed terapią, po czym urządzenie monitorujące było usuwane z pola wiązki na czas terapii.

Proponowany przez program SUCIMA nowy system monitorowania wiązki bazował na wykorzystaniu elektronów emisji wtórnej (ang. Secondary Emission Electrons – SEM) wyrywanych przez wiązkę hadronową z bardzo cienkiej folii aluminiowej, o grubości poniżej 1 μm, przez którą przechodziła ta wiązka. Wyemitowane elektryny były przyspieszane w polu elektrostatycznym w prostym układzie ogniskowym. Zakończone napięcie przyspieszające elektrony nie przekraczało 30 kV. System elektrostatyczny miał pozwalać na uzyskanie pomniejszonego obrazu wiązki z folii aluminiowej na płaszczyźnie detektora przy stosowanego do detekcji niskoenergetycznych elektronów.

Detektor ten miał być z założenia prosty, miał zapewniać wysoką odporność radiacyjną w zakresie 5÷5000 rad/s oraz dużą szybkość przesyłania obrazów, tj. 10 kfps, dając obrazy o rozdzielczości około 100×100 pikseli. Badania odporności na zniszczenia radiacyjne układów scalonych projektowanych w technologii submikronowej były przeprowadzone w powiązaniu z budową elektronicznych układów odczytowych dla eksperymentów na zderzaku hadronów w CERN [24]. W wyniku tych prac poznane zostały metody projektowania układów elektronicznych odpornych na promieniowanie. Również stworzenie prostego i wydajnego systemu zbierania danych, np. opartego na porcie USB (ang. *Universal Serial Bus*), było zadaniem dość dobrze zdefiniowanym [25].

Brakującym ogniwem w projekcie SUCIMA był detektor, który mógłby być wykorzystany do obrazowania przy użyciu niskoenergetycznych elektronów. Ze względu na wymagany duży zakres dynamiczny sygnału oraz postulowaną prostotę zrezygnowano z użycia szynetlata sprzężonego z kamerą rejestrującą w zakresie światła widzialnego. W zamian

⁹ EU Contract N. G1RD-CT-2001-00561
została wybrana metoda bezpośredniej detekcji elektronów. Ze względu na dążenie do zapewnienia prostoty systemu zrezygnowano z projektu hybrydowego detektora pikselowego, wymagającego skomplikowanego połączenia pomiędzy detektorem a układem odczytu. Odrzucono również zastosowanie urządzeń CCD ze względu na ich ograniczenia. Elementy CCD nie pozwalają na osiągnięcie wysokiej szybkości odczytu, charakteryzują się niską odpornością na zniszczenia radiaacyjne, mają niewielki zakres dynamiczny oraz nie pozwalają na pełne rozdzielenie fazy akumulacji sygnału od fazy odczytu. Ostatecznie jako kandydat wybrany został detektor typu MAPS [26][27].

Konieczne jednak było opanowanie technologii ścieniania takiego detektora celem zapewnienia penetracji elektronów z emisji wtórnej do warstwy epitaksjalnej. Postawione zadanie w sposób oczywisty zawierało dwa etapy, dwa problemy do rozwiązania. Pierwszym było opanowanie techniki równomiernego ścieniania układów MAPS aż do warstwy epitaksjonalnej. Istotne tutaj było, aby detektor po ścienieniu zachowywał swoje wyjściowe parametry. Drugim problemem było wykonanie projektu układu MAPS mającego funkcję i parametry dokładnie takie, jakie były wymagane przez program SUCIMA. Trzeba zaznaczyć, że ten drugi etap w sposób naturalny był ścisłe uzależniony od opanowania techniki ścieniania, która w połączeniu z zapewnieniem cienkiego okna wejściowego dały możliwość penetracji niskoenergetycznych elektronów do warstwy aktywnej detektora. Układ MIMOSA V, w związku z dużymi rozmiarami i dostępnością całych wafli krzemowych, został wyselek jonowany do praktycznej demonstracji możliwości ścieniania detektora MAPS.

Jakkolwiek prace były bezpośrednio motywowane wymaganiami programu SUCIMA, to taki ścieniony typ detektora MAPS mógł być przydatny również w innych aplikacjach niż tylko proponowany system monitorowania wiązki hadronowej, na co zwróciłem uwagę i co objąłem zakresem tematycznym moich badań.

4.2. Detektor MAPS MIMOSA V

Detektor MIMOSA V jest pierwszym dużych rozmiarów układem MAPS, jaki został zaprojektowany przy moim wydatnym udziale w grupie mikroelektronicznej w laboratorium IReS-LEPS w Strasburgu we Francji [15][16]. Jest to układ scalony o wymiarach jednej pełnej retykuly (ang. reticle), wykonany przy użyciu standardowego procesu CMOS 0,6 μm z warstwą epitaksjonalną o grubości 14 μm. Szczegółowe informacje na temat typu wałka, na którym był wytworzony układ MIMOSA V, są podane w tabeli 4.1.

4.2.1. Architektura układu MIMOSA V

Architektura MIMOSY V jest pokazana na Rys. 4.1. Urządzenie posiadające całościowo 1×10^6 pikseli o wymiarach $(17 \times 17) \mu m^2$ podzielone jest na cztery kwadraty. Każda kwadrat posiada niezależny kanał analogowy do odczytu. Wymiary układu wynoszą

\[10\] Opcja hybrydowa przewidziana była do zastosowania niejako w odwodzie, gdyby się okazało, że niemożliwe jest zaspokojenie potrzeb programu SUCIMA przez detektor monolityczny.
(19400×17350) μm², przy czym powierzchnia zajmowana przez matrycę pikseli jest nieznacznie mniejsza i wynosi (17408×17350) μm².

Tabela 4.1
Szczegółowe informacje na temat typu wafla, na którym był fabrykowany układ MIMOSA V

<table>
<thead>
<tr>
<th>Typ wafla i proces</th>
<th>6 cali, process AMS 0,6 μm CMOS, z podwójną studnią (ang. twin–tub), p–epi o grubości 14 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyjściowa grubość wafla</td>
<td>687 μm ± 25 μm</td>
</tr>
<tr>
<td>Domieszkowanie podłoża</td>
<td>5–8 mΩcm</td>
</tr>
<tr>
<td>Grubość warstwy epitaksjalnej</td>
<td>zgodnie z dokumentacją techniczną: 12 μm ± 2 μm, mierzona 14 μm (na wysokodomieszkowanym podłożu)</td>
</tr>
<tr>
<td>Rezystywność wynikająca z domieszkowania warstwy epitaksjalnej</td>
<td>8–12 Ωcm</td>
</tr>
<tr>
<td>Domieszkowanie</td>
<td>fosfor (P) i bor (B)</td>
</tr>
</tbody>
</table>

Cyfrowy układ adresowania pikseli oraz dokonywanie ustawień dla trybów pracy podzielone są na dwie części. Jeden wspólny blok obsługuje dwie lewe cwiartki, tj. P2TOP i P2BOT, a drugi dwie prawe cwiartki, tj. P1TOP i P1BOT. Część odczytowa i kontrolna układu MIMOSA V wraz ze wszystkimi polami kontaktowymi umiejscowiona jest na jednym brzegu układu w pasku o szerokości około 2 mm. Projekt piksela jest strukturą trójtranzystorową, 3T, z głęboką diodą o strukturze studni typu N / warstwa epitaksjalna typu P (n–well/p–epi), zbierającą ładunek generowany przez promieniowanie [12]. Struktura wewnętrzna jednej cwiartki detektora, organizacja odczytu oraz schemat pojedynczego piksela pokazane są na Rys. 4.2.

Rys. 4.1 Architektura układu MIMOSA V składającego się z czterech cwiartek, z których każda zawiera (510+2)×512 pikseli.

Rys. 4.2 Organizacja i schemat pojedynczego piksela MIMOSA V.
Układ piksela 3T pracuje w trybie liniowego całkowania zbieranego ładunku. Zbierany ładunek wywołuje zmianę odpowiedzi napięciowej, która może być odczytana poprzez tranzystor M₂, pokazany na Rys. 4.2, pełniący funkcję konwertera impedancji. Odczyt następuje przez przyłączanie linii wychodzącej z piksela, która staje się linią łączącą wszystkie piksele w kolumnie, do wzmacniającego buforującego wyjścia na zewnątrz układu. Ze względu na duże rozmiary układu, dla zapewnienia odpowiedniej szybkości jego działania, przyłączanie piksele do wyjścia zachodzi przez dodatkowy stopień wtórnika, znajdujący się po klużu wyboru kolumny. Również celem uniezależnienia szybkości odczytu od stałych czasowych ładowania linii odczytowych MIMOSA V korzysta z rozwiązania tzw. przygotowania do odczytu. Odczyt z przygotowaniem polega na jednoczesnej aktywacji kilku linii odczytowych celem ustalenia się na nich poziomów napięć. Kiedy napięcia są ustalone, dokonuje się komutacji tak przygotowanych linii za pomocą multipleksera przed samym buforem wyjściowym, którego pojemność wejściowa jest mała. Wprowadzone przez mnie rozwiązanie odczytu z przygotowaniem [16], rozszerzone na większą liczbę linii oraz uzupełnione o sumowanie sygnałów (ang. binning) z sąsiednich pikseli w układzie MIMOSA V okazało się skutecznym środkiem zapewnienia dużej szybkości odczytu przy zachowaniu niskiego poboru mocy. Można zauważyć, że wszystkie piksele, z wyjątkiem tylko tych, które są wybrane albo do bezpośredniego odczytu albo do fazy przygotowania, są wyłączone z poboru mocy.

![Rys. 4.2 Struktura wewnętrzna pojedynczej ćwiartry; pokazana schematycznie metoda odczytu matrycy oraz schemat piksela (z prezentacji końcowej projektu SUCIMA przygotowanej przez autora).](image-url)

Rzeczywisty rozmiar czynnej części matrycy wynosi 510×512 pikseli. Dla użytkownika odczyt wygląda jednak na pełne 512 kolumn, dając jeden pełen odczyt matrycy składający się z (510+2)×512 pikseli. Długość rejestru przesuwnego wybierającego kolumny do odczytu jest pokazana jako pełne 512 bitów na Rys. 4.2, jednak w matrycy liczy jedynie 510 kolumn, a dla uzyskania poprawności przejścia w adresowaniu pomiędzy rzędami z przygotowaniem piksele do odczytu dwie dodatkowe, fizycznie nieistniejące, kolumny są dodawane na końcu odczytu każdego rzędu. To dopominienie o dwie dodatkowe kolumny daje
zewnętrzny wynik dwukrotnej odczytu sygnałów z dwóch ostatnich pikseli z każdego rzędu, który może być łatwo usunięty w systemie akwizycji danych.

Krytycznym elementem, który zadecydował z jednej strony o dużej szybkości odczytu z każdej podmatrycy o wymiarach 512×512 pikseli, a z drugiej strony pozwolił na minimalizację szumów w układzie bez znaczącego podnoszenia poboru mocy, jest wprowadzone przeze mnie przygotowanie do odczytu. Przygotowanie do odczytu, które może być wiązane jako tzw. puste odczyty, jest rozwiązaniem nowym. Ono ostatecznie zadecydowało o utrzymaniu kilkunastoelektronowego progu szumów, jaki wykazano, że można było osiągnąć w układach o małych rozmiarach, w układzie MIMOSA V. Puste odczyty umożliwiają wstępne naładowanie pionowych i poziomych linii odczytowych w matrycy w czasie adresowania. To wstępne ładowanie linii jest użyte w celu zwiększenia szybkości odczytu detektora przy unikaniu konieczności zwiększania pasma częstotliwościowego wtórnika źródłowego w pikselu jak również wzmocniaczy na dole kolumn. Polaryzacja wtórników źródłowych względnie dużymi prądami, dająca w efekcie podwyższenie transcenduktancji tranzystora wtórnika, a jednocześnie zachowanie wąskich pasm częstotliwościowych przez obciążenie pojemnościowe, decyduje o ograniczeniu szumu. Kolumna, z której pochodzi piksel czytany w danym momencie, jest podłączona do wzmocniacza wyjściowego, jednakże w tym samym momencie następują klucze „przygotowywane” do odczytu. Prądy polaryzacji są włączane dla tych kolumn i wszystkie klucze z wyjątkiem ostatniego stopnia, przyłączającego do wzmocniacza-bufora wyjściowego, są zamknięte. W wyniku takiego działania pojemności pasożytnicze linii odczytowych mogą być powolni naładowane do poziomu napięcia wyjściowego pikseli następnego w kolejce do odczytu. W celu zapewnienia wystarczającej szybkości na przygotowanie do odczytu pierwszego piksela w nowym rzędzie konieczne są dodatkowe cykle zegara. Puste odczyty okazały się najprostszych a jednocześnie bardzo efektywnym sposobem na przejście do następnego rzędu, pozwalającym na poprawny odczyt wszystkich fizycznie istniejących pikseli.

Szczegółowy schemat części odczytowej detektora MIMOSA V jest pokazany na Rys. 4.3. Rysunek ten obejmuje część układu MIMOSA V, która jest odpowiedzialna za multiplikację sygnałów z pikseli. Pojemność jednej pionowej linii odczytowej, łączącej wszystkie piksele w kolumnie i dochodzącej do dołu kolumny, wynosi około 8 pF. Główny wpływ na tę pojemność mają pojemności złączowe dren–podłoże kluczy tranzystorowych w każdym pikselu. Klucze w pikselach są pierwszym stopniem wybierania. Drugi stopień adresacji zachodzi na poziomie kolumn, które są przełączane na linie biegnące poziomo. Pozostawienie jedynie kluczy tranzystorowych do aktywowania kolumn spowodowałoby znaczną zwiększenie pojemności linii, która musiałaby być w całości pilotowana przez wtórnik źródłowy z piksela. Wobec tego w konstrukcji układu zastosowano drugi stopień buforowania sygnałów analogowych, używając wtórników źródłowych z tranzystorem PMOS na dole każdej kolumny. Osiągnięto w ten sposób separację pionowych linii kolumn od poziomych linii łączących razem kolumny na dole matrycy. Wyjścia wtórników źródłowych PMOS są przyłączane do poziomych linii odczytowych przez bramki transmisyjne, sterowane przez komplementarne sygnały wyboru kolumny COL_SEL i COL_SEL_B. Liczba poziomych linii odczytowych wynosi 6. Pojemność jednej poziomej linii odczytowej, łączącej wybrane kolumny i dochodzącej do wzmocniacza wyjściowego, wynosi około 3,5 pF. Sygnały wyboru kolumny używane są również do aktywowania prądu spożycznego w kolumnach wybranych do odczytu. W celu zapewnienia szybkiego czasu ustalania się sygnałów prąd spożycznego we wtórnikach źródłowych został ustalony odpowiednio na około 75 μA i 25 μA dla piksela i dla dołu kolumny.
Rys. 4.3 Szczegółowy schemat układu odczytowego detektora MIMOSA V [16].

Každa z sześciu poziomych linii odczytowych kończy się wzmacniaczem, dającym pięciokrotne wzmocnienie napięciowe. Wyjścia tych wzmacniaczy są multipleksowane na
wejście bufora wyjściowego. Bufor ten może pracować w dwóch trybach. Tryb pracy wybrany jest z zewnątrz przez sygnał \(ATT \). Dla wysokiego stanu na linii \(ATT \) wzmacniacz wyjściowy pracuje jako dzielnik sygnału przez dwa, a dla stanu niskiego jako wtórnik. Kolumny są aktywowane w grupach po trzy sąsiednie przy użyciu 170 oddzielnych linii wyboru kolumn \(COL_SEL \) i \(COL_SEL_B \). Przyłączanie wyjścia jednego z sześciu wzmacniaczy do bufora wyjściowego następuje poprzez aktywację komplementarnych sygnałów \(VSW1..6 \) i \(VSW1..6_B \). Adresowanie kolumn w grupach po trzy określa czas, w jakim dana kolumna jest „przygotowywana” do odczytu. Czas ten wynosi od trzech do pięciu cykli zegara dla odpowiednio pierwszej i ostatniej kolumny z nowo wybranego trypletu. Każdy ze wzmacniaczy umieszczonych przed buforem wyjściowym charakteryzuje się niską impedancją wyjściową, co pozwoliło na wbudowanie dodatkowych trybów pracy układu MIMOSA V. Za wybór trybu pracy odpowiedzialny jest układ kontrolny, zaznaczony na Rys. 4.2. Tryby te to tzw. elektroniczna migawka (ang. electronic shutter), szybki odczyt z przeszkakiwaniem i odczyt tylko co dziewięćdziesiątego piksela (ang. fast–scan) oraz tryb z sumowaniem każdych kolejnych trzech pikseli (ang. summing). Dodatkowe tryby odczytu zostały zilustrowane na Rys. 4.2.

Z dostępnych dodatkowych trybów pracy szczególnie przydatny był tryb z przeszkakiwaniem piksela. Jego użycie umożliwiało szybkie i łatwe pozycjonowanie detektora w czasie np. lokalizowanie plamki strumienia elektronów, przy wykorzystaniu podglądu w czasie rzeczywistym na ekranie komputera. Ustalenie trybu pracy dokonywane jest przez odpowiednie sterowanie linii \(VSW1..6 \) i \(VSW1..6_B \) oraz rekonfigurację rejestrów przesuwnych i wstawianie odpowiedniego wzoru do generacji sekwencji na linii \(COL_SEL \) i \(COL_SEL_B \). Dodatkowe tryby pracy pomyslane były pod kątem zastosowań w fizyce wysokich energii, gdzie często wymagana rozdzielczość detektora wzdłuż jednej wspólnej osi może być mniejsza niż w drugim kierunku, lub do szybkiego podglądu np. profilu wału w czasie testów. Ze względu na fakt, że badania przedstawione w niniejszej pracy rozdzielczość jednego z trybów pracy niż tryb standardowy z podziałem na okres fazowy po prostu wymagała dodatkowej aktywacji kolejnych z sześciu sygnałów. Dodatkowe tryby pracy mogą być wykorzystywane do usunięcia czasu martwego pracy detektora wzdłuż jednej osi cyklu pracowania sygnału zegarowego oraz impulsu kolkości warstwowej \(\tau_{\text{int}} \), wyrażającego się następująco:

\[
\tau_{\text{int}} = \frac{512 \times 512}{f_{\text{clk}}}.
\]

(4.1)

Układ pikseli w matrycy jest regularny kwadratowy. Przetwarzanie danych pochodzących z wyjścia matrycy bazuje na podwójnym próbikowaniu z zachowaniem korelacji (CDS). Wynik jest obliczany jako różnica pełnych, kolejno po sobie pobieranych ramek. Każdy cykl odczytowy rozpoczyna się znaną fazę resetu, podczas której przywracana jest głęboka wsteczna polaryzacja na diodach zbierających ładunek w każdym pikselu. Dokonuje się tego poprzez kolejne wybieranie rzędów, zamykając klawoce tranzystorowe \(M_1 \) w każdym pikselu z zaadresowanego rzędu. Obecność fazy resetu wprowadza minimalny, niemożliwy do usunięcia, czas martwy pracy detektora. Czas martwy, \(\tau_{\text{dead}} \), wynikający
z obecności fazy resetu wynosi:

\[
\tau_{\text{dead}} = \frac{512 \times N_{\text{row}}}{f_{\text{clk}}},
\]

gdzie \(N_{\text{row}} \) – programowalna liczba rzędów wybieraných do jednoczesnego resetowania.

Resetowanie matrycy pikseli może zachodzić jednocześnie na grupie składającej się z \(N_{\text{row}} \) rzędów. W każdym cyklu zegara jeden nowy rząd jest dodawany do grupy oraz jeden rząd jest usuwany z końca okna resetującego. Taki model, unikający jednoczesnego resetowania całej matrycy, został przyjęty w celu uniknięcia silnych impulsów prądowych, mogących się pojawić przy jednoczesnym wyborze pikseli z całej matrycy do resetowania. Dodatkowy czas martwy może być wprowadzany przez sam system akwizycji w uzależnieniu od rozmiarów matrycy układu detektora. Rozmiar matrycy pikseli w układzie MIMOSA V pociąga za sobą ogromne ilości danych koniecznych do przesyłania do komputera, które wymagają przyjęcia przez program realizujący ich akwizycję, ich analizę, a następnie zapisu uzyskanych wyników na dysk twardy. Warto tutaj przywołać spostrzeżenie, że jedna pełna ramka przetworzonych z dwunastobitową rozdzielczością danych wynosi około 1,5 MB danych.

Ukończenie fazy resetu automatycznie inicjuje proces cyklicznego wywoływania pikseli do odczytu. Jest to proces zapętłony, tj. w momencie osiągnięcia ostatniego piksela z rogu matrycy układ przechodzi z powrotem do pierwszego piksela. W układzie MIMOSA V dostępną formą odczytu jest akwizycja pełnych ramek. Odczyt układu jest oparty na sekwencyjnym adresowaniu pikseli przy użyciu rejestrów przesuwnych osobno do kolumn i do rzędów. Ten sposób, podobny do adresowania X–Y komórek pamięci, został zapewniony przez użycie kluczy dostępu do rzędów M3 w każdym pikselu, kluczy dostępu do kolumn (wraz z wtórnikami PMOS, które będą omówione w dalszej części pracy) na dole każdej kolumny oraz systemu wzmocniaczy i kluczy znajdujących się poza częścią akwaryną matrycy. Sygnały z adresowanych pikseli są kolejno multiplexowane na wejściu wzmocniaczy wyjściowego. Wzmocniacz ten cechuje się wystarczającym szerokim pasmem częstotliwościowym i wydajnością prądową do sterowania pojemności zewnętrznymi, na które składają się pojemności wejściowe wewnętrznych wzmocniaczy, pojemności doprowadzeń na płytcie obwodów drukowanych, pojemności drutów łączących układ z obwodami na płytce drukowanej itp.

Metoda odczytu oraz sposób, w jaki obliczany jest końcowy sygnał, są pokazane na Rys. 4.4. Ilustracja obejmuje przykład typowej sekwencji, tj. wykonanie resetu, odczyt dwóch kolejnych ramek i przejście do kolejnego resetu. W przypadku ogólnym liczba odczytywanych ramek pomiędzy cyklami resetu może być większa, przy czym limitem jest nasykanie się pikseli z powodu prądu upływu. Zgodnie ze schematem odczytu, uderzenia cząstek są widoczne, jeśli przypadają na ostatnią ramkę rejestrowaną przez układ akwizycji. W przypadku takim różnica sygnałów z tego samego piksela z ramki \(n \) i \(n+1 \) będzie zawierać informację odpowiadającą ilości zebranego ładunku po uderzeniu cząstki, w pozostałych przypadkach różnica jest jedynie miarą napływającego ładunku z prądu upływu. Przebiegi oznaczone symbolami A i B na Rys. 4.4 oznaczają stan napięcia na wyjściu wybranych pikseli A i B w funkcji czasu. Powolne opadanie napięcia związane jest z gromadzeniem
się ładunku z prądu upływu. Dla przypadku B zdeponowanie energii przez cząstkę miało miejsce w ostatniej ramce bранe do odczytu i sygnał jest widoczny po CDS. Natomiast w przypadku A, uderzenie cząstki miało miejsce w ramce wcześniejj i sygnał jest zgu- biony po CDS. Intensywność koloru szarego oznacza gromadzący się z czasem ładunek z prądu upływu.

W wykonywanych testach przy użyciu układu MIMOSA V założono, iż będą pobierane zawsze tylko dwie ramki w każdej fazie odczytowej następującej po fazie resetu. Po pobra- niu drugiej ramki system akwizycji inicjował kolejną fazę resetu, a następnie przechodził do fazy odczytu.

Ze względu na optymalizację współczynnika konwersji ładunku na napięcie zdecydowa- no się w układzie MIMOSA V na zaprojektowanie układu elektronicznego piksela stosując tylko częściowo reguły projektowe pozwalające na zwiększenie odporności na zniszczenia radiacyjne [24]. Wszystkie tranzystory, z wyjątkiem tranzystora resetującego w pikselu, są tranzystorami ze standardową prostokątną bramką. Ponieważ najbardziej krytycznym ele- mentem z punktu widzenia wzrostu prądu upływu (będącego wynikiem uszkodzeń joniza- cyjnych) jest tranzystor resetu, to w jego przypadku zastosowano geometry zamkniętej bramki (ang. enclosed gate transistor).

System odczytu detektora MIMOSA V, używany w testach przedstawionych w niniej- szej pracy, złożony był z karty akwizycji podłączonej przez USB 2.0 do komputera PC. Karta akwizycji zapewniała odbiór sygnałów analogowych z czterech części układu MIMOSA V, konwersję do postaci cyfrowej oraz sprzętowe liczenie różnic dwóch sąsied- nich ramek, a następnie wysyłanie wyniku do komputera [25]. Karta akwizycji została zaprojektowana przez grupę z Instytutu Fizyki Jądrowej im. H. Niewodniczańskiego w Krakowie.
5. **Przystosowanie i wykorzystanie detektora MAPS do obrazowania przy wykorzystaniu niskoenergetycznych elektronów**

Detektory MAPS pokazały swoją przydatność w śledzeniu torów cząstek jonizujących do wykorzystania w przyszłości w konstrukcji detektora wierzchołka w ekspermentach fizyki wysokich energii i fizyki jądrowej [13][14][15][16]. Istnieje jednak wiele technik eksperymentalnych, które wykorzysytują np. rejestrację niskoenergetycznych elektronów i które potrzebują coraz lepszych systemów detekcyjnych, a potencjalnym kandydatem są detektory MAPS. O ile jednak w przypadku eksperymentów w fizyce wysokich energii cząstki przechodzą przez całą grubość wafla krzemowego, to w przypadku niskoenergetycznych elektronów zasięgi są zdecydowanie mniejsze.

Bezposредnia detekcja niskoenergetycznych elektronów za pomocą detektora półprzewodnikowego wymaga zapewnienia okna wejściowego o minimalnej grubości, pozwalającego na penetrację elektronów do aktywnej objętości detektora. W przypadku detektorów MAPS konieczne było ścinienie detektora od strony podłoża do osiągnięcia warstwy epitaksjonalnej i używanie tak otrzymanego urządzenia do ekspozycji od tyłu detektora (ang. *back-side illumination*). Podjęto zatem próbę uzyskania pierwszego na świecie ścinionego detektora MAPS.

W tym rozdziale omówiono konstrukcję detektora MAPS pozwalającego na detekcję niskoenergetycznych elektronów, przedstawiono wyniki pomiarów wykonanych przy użyciu zestawu testowego hybrydowej fotodiody (ang. Hybrid Photo–Diode – HPD), wyniki testów obrazowania, tzw. autoradiografii źródła zawierającego tryt 3H, i wyniki testów w skaningowym i transmisyjnym mikroskopie elektronowym.

5.1. **Detektor MAPS przystosowany do detekcji niskoenergetycznych elektronów**

Zdolność detekcji elektronów w zakresie kilkunastu keV przy użyciu detektora MIMOSA V została uzyskana przez ścinienie podłoża aż do osiągnięcia warstwy epitaksjonalnej. Procedura ścinania, której użycie wymagało pełnych wafl zanim zostaną one pocięte na poszczególne układy scalone (ang. *dicing*), została opracowana we współpracy z partnerem przemysłowym, którym była grupa zajmująca się fotodetekcją z firmy ATMEL. W pierwszym podejściu minimalny wsad (ang. *batch*) składający się z sześciu wafl został użyty do
testowania procedury ścieniania. Zadanie było trudne ze względu na konieczną dokładność ścieniania i pozostawienie jedynie jednorodnej warstwy epitaksjonalnej o grubości około 10 μm. W pierwszym kroku ścieniania usuwano, głównie stosując mechaniczne ścieranie, część podłoża o grubości 400 – 500 μm zostawiając kilkadziesiąt mikrometrów materiału. Dokładna wartość grubości usuniętej części zależała od wyjściowej grubości wafl krzemowych.

W kolejnych krokach, używając procesu trawienia i metod wspomaganego chemicznie polorowania CMP (ang. chemical–mechanical polishing), usuwano pozostałą część nieużytecznego podłoża. Dużym wyzwaniem w tych ostatnich krokach był niekorzystny z punktu widzenia trawienia układ typów przewodnictwa. Wysokodomieszkowane podłoże typu P+ ulega wolnemu trawieniu przy użyciu typowych roztworów trawiących, np. KOH, natomiast szybkość trawienia wzrasta po osiągnięciu niskodomieszkowanej warstwy epitaksjonalnej, co może prowadzić do przetrawień. Użycie przez partnera przemysłowego kombinacji procesów ścierania mechanicznego do usunięcia pierwszego nadmiaru podłoża, a następnie odpowiednio dobranych roztworów i ścierania CMP, pozwoliło uzyskać bardzo dobrą jakość powierzchni o chropowatości około 100 nm. Uzysk procesu ścieniania praktycznie nie zmienił pierwotnego uzysku spodziewanego z układów wyjściowych. Jedynie pojedyncze punktowe defekty na powierzchni i nieliczne przetrawienia dały się zaobserwować na otrzymanych z powrotem waflach krzemowych po zakończeniu ich procesowania.

Okno wejściowe dla elektronów było cienką warstwą SiO₂ chroniącą detektor. Celem opracowania optymalnej procedury wytworzenia okna wejściowego przetestowano kilka wariantów technologicznych, uzyskiwając w rezultacie grubości warstwy SiO₂ od 60 do 160 nm. W późniejszych testach najczęściej używane były układy z oknem wejściowym o grubości około 100 nm.

Innym istotnym problemem było odzyskanie bariery odbijającej elektrony od nowo uzyskanej powierzchni. W oryginalnym układzie elektrostatyczna bariera, istniejąca pomiędzy niskodomieszkowaną warstwą epitaksjonalną a wysokodomieszkowanym podłoże ogranicza dyfuzję elektronów jedynie do objętości warstwy epitaksjonalnej. Ta bariera potencjału jest wyższa od potencjału termicznego i wynosi typowo kilkadziesiąt miliwoltów. Strona wejściowa, otrzymana po ścienianiu, jest elektrycznie „pływająca”. Fakt usunięcia podłoża i dotarcie ze ścieniania do warstwy epitaksjonalnej usuwa bariery potencjału pierwotnie istniejącą między warstwą epitaksjonalną a podłożem, która wynika z różnic w domieszkowaniu. Bariere potencjału w warstwie epitaksjonalnej na granicy z SiO₂ (okno wejściowe) zamierzano odzyskać za pomocą płytkiej implantacji atomów boru. Wykorzystano dawkę \(3 \times 10^{14}\) jonów/cm² przy energii implantacji 45 keV na jednym waflu i 55 keV na drugim. Jednakże wydajność aktywacji tej implantacji nie była znana z uwagi na fakt, iż pełne wygrzanie wafla w wysokiej temperaturze nie było możliwe ze względu na ryzyko zniszczenia układów elektronicznych. Do aktywacji implantacji użyto lasera pracującego w zakresie światła ultrafioletowego (ang. exciplex laser).

Ilustracja sposobu modyfikacji standardowego detektora MAPS, prowadzącej do struktury pozwalającej na detekcję niskoenergetycznych elektronów jest pokazana na Rys. 5.1. Sekwencja istotnych kroków w uzyskaniu ścianionego detektora MAPS jest pokazana na tym rysunku w kolejności od góry do dołu. Na górze rysunku pokazany jest przekrój przez detektor MAPS w jego oryginalnej formie przed ścienieniem. Pierwszym krokiem rozpoczynającym całą procedurę ścianiania było mechaniczne wzmocnienie wyjściowej górnej strony wafl, które zostało osiągnięte przez przyklejanie (ang. bonding) innego wafl krze-
mowego. Następnie podłoże typu P++ zostało usunięte i odsłonięta warstwa epitaksjalna została pokryta SiO₂. Ponieważ dostęp do pól kontaktowych (ang. bonding pads) został zablokowany w wyniku nałożenia na samym początku wafla zapewniającego stabilność mechaniczną, to otwarcia okien pod oryginalnymi polami kontaktowymi w celu zapewnienia połączeń elektrycznych do struktury detektora dokonano przy użyciu selektywnego trawienia. Powierzchnie aluminowe, nowo odsłonięte w oknach, były spodnimi warstwami pierwotnych pól kontaktowych. Te odsłonięte powierzchnie usytuowane we wnękach wynikających z trawienia były wykorzystywane do wykonania połączeń bezpośrednio do płytki z obwodami drukowanymi. Nowe połączenia były wykonane niejako od spodu wyjściowej struktury detektora. Niewielkie wymiary otwartych pól kontaktowych (85×85) μm² oraz fakt ich umiejscowienia na głębokości ponad 10 μm poniżej powierzchni detektora były sporym utrudnieniem i wymagały użycia precyzyjnej głowicy bondującej zapewniającej głęboki dostęp. Po kilku próbach udało się uzyskać stabilne połączenia standardowym drutem aluminiowym o grubości 17 μm.

Rys. 5.1 Ilustracja sposobu modyfikacji standardowego detektora MAPS prowadzącego do uzyskania struktury pozwalającej na detekcję niskoenergetycznych elektronów (rysunek oryginalny z prezentacji końcowej projektu SUCIMA przygotowanej przez autora). Na rysunku pokazane są w sposób uproszczony kroki, które konieczne są dla otrzymania detektora ścienionego: na górze: detektor MAPS w stanie na początku przed rozpoczęciem modyfikacji; po środku: przyklejenie wafla zapewniającego mechaniczny stabilność, usunięcie części podłożowej i wytrawienie wnęk dających dostęp do pól kontaktowych; na dole: pasywacja i wytworzenie okna wejściowego.
Widok ścienionego detektora MIMOSA V umiejscowionego na płycie obwodów drukowanych jest przedstawiony na Rys. 5.2.

Rys. 5.2 Widok ścienionego detektora MIMOSA V na płycie obwodów drukowanych.

Płytka celowo zawiera minimalną ilość układów elektronicznych ze względu na ograniczenia wydzielanej na niej mocy i możliwość chłodzenia detektora przez element Peltiera, zamontowany od spodniej strony płytki.

5.2. Kalibracja wzmocnienia ścienionego detektora

Bezoznaczna kalibracja wzmocnienia konwersji ładunku na napięcie jest istotna dla detektorów MAPS. Szczególnie ważne jest wykonanie tej kalibracji poprawnie, dlatego że w pracę detektorów tego typu wpisane są efekty niepełnego zbierania ładunku i jego podział pomiędzy sąsiadujące ze sobą piksele, które to efekty zostały szczegółowo omówione w rozdziale 3. Porównanie kalibracji detektora ścienionego z układem wyjściowym w sposób naturalny było postrzegane jako jedno z narzędzi pozwalających na oszacowanie jakości ścianiania. Jedną z metod absolutnej kalibracji współczynnika konwersji zebranego ładunku na napięciowy sygnał wyjściowy CVF jest użycie referencyjnego źródła ładunku.

Wygodnym i często stosowanym źródłem referencyjnym jest źródło radioaktywne 55Fe. Źródło to emituje niskoenergetyczne, tzw. miękkie, promieniowanie X o energiach $K_x=5,89$ keV oraz $K_y=6,49$ keV. Fotony o tych energiach generują w krzemie odpowiednio 1640 i 1800 par e^-h^+. Ponieważ aktywna dla detekcji objętość detektora MAPS nie jest zubożona, ładunek dostępny po konwersji fotona X jest w większości przypadków dzielony pomiędzy piksele sąsiednie. W przypadku braku ukierunkowanego ruchu ładunków w kierunku jednej elektrody zbierającej, jak to ma miejsce w detektorach półprzewodnikowych z pełnym zubożeniem, może dochodzić do strat w zbieranym ładunku. Jedynie nieliczne przypadki fotonów mogą być użyte do otrzymania właściwej wartości współczynnika konwersji ładunku na sygnał wyjściowy. Są to przypadki fotonów, których konwersja zachodzi dokładnie w objętości implantacji studni typu N diody zbierającej ładunek oraz w płytkich obszarach zubożonych tych diod. Przykład otrzymanego widma fotonów ze źródła 55Fe dla pojedynczego piksela jest pokazany na Rys. 5.3.
Rys. 5.3 Widmo fotonów ze źródła 55Fe otrzymane dla piksela centralnego w analizie klastrów pikseli w programie rekonstrukcji.

Histogram obejmuje wszystkie przypadki konwersji fotonów, niezależnie od miejsca w detektorze, w jakich konwersje zaszły. Histogram został otrzymany dla pikseli centralnych, określonych przez algorytm wyszukiwania klastrów. Algorytm ten był zaimplementowany w dedykowanym programie rekonstrukcji, przygotowanym przeze mnie, do analizy danych pochodzących z detektora. Klastrem nazywano grupę sąsiednich pikseli, pomiędzy którymi obserwowano rozpływ ładunku w pojedynczym zdarzeniu konwersji energii fotonu na jonizację. Grupa pikseli była klasyfikowana jako kластer z sygnałem pochodzącym z uderzenia fotonu, jeśli w pierwszej kolejności stosunek sygnału do szumu dla piksela centralnego oraz następnie stosunek zsumowanego sygnału z grupy do zsumowanego szumu były większe od założonych wartości. Wysokość cięcia dla zsumowanego sygnału z grupy była większa od cięcia dla sygnału tylko z piksela centralnego. Takie ułożenie cięć na SNR eliminowało fałszywe przypadki zliczeń pochodzące od szumu, ale jednocześnie nie pomijało przypadków, w których ładunek dzielił się pomiędzy sąsiedów. Dane były analizowane na bieżąco wraz z ich napływaniami, a na dysk twarde zapisywane były jedynie ostateczne informacje, takie jak mierzone sygnały w pikselach budujących klastery i położenia klastrów. We wszystkich przypadkach obserwowano, iż ładunek, który mógł być mierzony poza grupą 3×3 sąsiednich pikseli, był pomijalny, tj. był on mierzony poniżej poziomu szumu. Jednakże dla bezpieczeństwa przyjęto, że zapisywane na dysk klastry miały rozmiar okien 5×5 pikseli. Wybór piksela centralnego w klastrze następował podstawie kryterium SNR. Pierwszym krokiem było przeszukiwanie całego obrazu celem wyciągnięcia wszystkich pikseli spełniających założone kryterium na SNR. W ten sposób otrzymywano wszystkich kandydatów na piksele, które mogły być załączkami klastrów. Następnie piksele–kandydaci były ustawiane w malejącym porządku przy kierowaniu się kryteriom SNR. Kolejnym krokiem było uzupelnienie piksele–kandydata o najbliższych sąsiedów, liniowe zsumowanie sygnałów i średniokwadratowe zsumowanie szumów, po czym zastosowanie cięcia na SNR z otrzymanej sumy. Jako piksel centralny kwalifikowany był zawsze piksel z najwyższym SNR w klastrze. Operację wykonywano sekwencyjnie aż do wyczerpania się wszystkich pikseli–kandydatów z danej ramki. Jeżeli okazywało się, że

11 Termin „obraz” odnosi się tutaj do ramki powstałej po wykonaniu operacji odejmowania (CDS) i innych krokach filtracji, takich jak np. usunięcie szumu skorelowanego przestrzennie w ramce (ang. common mode).
Jakiś piksel-kandydat stawał się częścią wcześniej zidentyfikowanego klastra, był on eliminowany z kolejki.

Po lewej stronie histogramu pokazanego na Rys. 5.3, tj. w części zawierającej sygnały o mniejszych amplitudach, obecny jest szeroki pik o dużej populacji wejści. Położenie tego piku jest w okolicach 50 jednostek przetwarzania analogowo-cyfrowego ADCU (ang. Analog-to-Digital Conversion Unit), a grupuje on sygnały pochodzące z konwersji fotonów zachodzących w różnych miejscach warstwy epitaksjalnej. Natomiast w części widma z wyższymi wartościami sygnałów zaznacza się dodatkowy mały pik, który można łatwo zauważyć dopiero przy większej populacji zarejestrowanych przypadków. Ten mały pik leży w okolicach 240 ADCU. Powiększenie tego obszaru oraz większa statystyka danych pozwala: dostrzec w tym miejscu właściwie dwa piki. Sytuacja ta jest dokładniej ukazana na Rys. 5.4. Zauważenie tych dwóch rozdzielnych pikiów oraz analiza konstrukcji klastrów pozwoliły mi skonstatować, że piki te pochodzą z emisji fotonów Kα i Kβ z źródła 55Fe i że wejście do tych dwóch pików są unikalne, tj. obejmują jedynie przypadki pełnego depozytu ładunku w pikelu centralnym – bez rozpyłu na sąsiadów. Korzystając z odczytanego położenia pików i ze znajomości energii fotonu oraz średniej energii potrzebnej na wygenerowanie pary e⁻–h⁺ wynoszącej około 3,6 eV dla krzemu [1], uzyskuje się absołutną wartość współczynnika konwersji ładunku na sygnał wyjściowy. Pozwala to na pełną kalibrację detektora. W kalibrację tę można włączyć określenie prądu upływu pojedynczej diody w danej temperaturze i wartość ENC szumu odniesioną na wejściu piksela. Otrzymane wartości dla detektora ściślanej były dokładnie takie same, tzn. szum od kilkunastu do dwudziestu kilku e⁻ i prąd upływu poniżej 10 fA/piksel, jak dla detektora wyjściowego – nieściennej [15]. Pozwoliło to na stwierdzenie, że operacja ściśnienia nie wpłynęła na parametry elektryczne układu detektora.

![Rys. 5.4 Część widma fotonów ze źródła 55Fe dla piksela centralnego grupująca jedynie sygnały o najwyższych amplitudach.](image)

Ze względu na to, że metoda kalibracji wywodząca współczynnik konwersji ładunku na napięcie z obecności dodatkowych pików w widmie fotonów pochodzących ze źródła referencyjnego nie była wcześniej stosowana[12], konieczne było jej zweryfikowanie. Potwier-
dzenie założenia o pochodzeniu wejść w oddzielnym małym piku na histogramie z **Rys. 5.3**, jako wyniku konwersji fotonów w objętości studni typu N diody zbierającej ładunek oraz w płytkiej warstwie zubożonej, powstałej w wyniku utrzymania wstecznego spolaryzowania diody, było przeze mnie analizowane w symulacjach zbierania ładowania [16]. Użyskane wtedy wyniki, ze względu na populację symulowanych przypadków ograniczoną przez możliwości obliczeniowe pozwoliły jedynie na jakościowe potwierdzenie założenia o pochodzeniu oddzielnego pików w histogramach. Pomiary, przeprowadzone obecnie, uakcentowane były na zebranie dużej populacji przypadków. Zostało to możliwe przez program komputerowy, przygotowany przeze mnie, który pozwalał na eliminację tzw. pustych danych (ang. *zero suppression*). W konsekwencji zebrania dużej populacji przypadków możliwe było przeprowadzenie dodatkowej eksperymentalnej weryfikacji metody kalibracji detektora.

Wykonanie pożądanego ilościowego weryfikacji oparto na porównaniu populacji wejść po-między pikami kalibracyjnymi a całkowitą populacją przypadków ze stosunkiem objętości wyszczególnionych obszarów. Sygnały ze zbierania ładowania z warstwy epitaksjalnej stanowczo dominują populację wszystkich przypadków. Dlatego uzyskanie odpowiednio wysokiej liczności przypadków związanych z wejściami do piku kalibracyjnego było konieczne dla uzyskania odpowiedniej dokładności weryfikacji metody kalibracyjnej.

Zapewniając równomierne oświetlenie powierzchni detektora przez źródło fotonów, należało by się spodziewać, że stosunek populacji przypadków konwersji powinien odzwierciedlać stosunek objętości, w których dokonuje się zliczeń. W przypadku detektora ściennego możliwe jest precyzyjne określenie wymiarów geometrycznych objętości, z której pochodzi zbierany ładunek dający sygnał w danym pikselu. W detektorze ściennym nie ma przycznika sygnału pochodzącego z podłoża, który jest trudny do oszacowania szczególnie z powodu osłabienia strumienia fotonów w funkcji głębokości oraz rekombinacji uwalnianego ładunku.

Biorąc pod uwagę stopień domieszkowania studni typu N i studni typu P oraz warstwy epitaksjalnej, można założyć prosty geometryczny model diody, składający się z dwóch prostopadłościanów. Odpowiednia ilustracja jest dana trójwymiarowym modelu geometrycznym piksela, zawierającym diodę n\text{-}well/p\text{-}epi, który jest pokazany na **Rys. 5.5**. Pierszy prostopadłościan ma całkowite wymiary (3,3×3,3×2,5) μm³ dla układu MIMOSA V i reprezentuje studnię typu N. Jego podstawa ma wymiary studni typu N (na obrazie masek) powiększone o głębokość zubożenia wchodząca w obszar studni typu P. Głębokość zubożenia studni typu P jest wyliczona przy znajomości napięcia polaryzacji. Wysokość pierwszego prostopadłościanu równa jest głębokości złącza. Drugi prostopadłościan ma całkowite wymiary (5,1×5,1×1,8) μm³ dla układu MIMOSA V i reprezentuje warstwę zubożoną diody rozszerzającą się do warstwy epitaksjalnej. Jego podstawa ma również wymiary studni typu N, ale jest ona poszerzona o głębokość boczne zubożenia warstwy epitaksjalnej. Wysokość drugiego prostopadłościanu jest równa głębokości zubożenia warstwy epitaksjalnej. Dla obliczeń wymiarów geometrycznych założono wsteczne napięcie na diodzie wynoszące 3,0 V.

Posługując się histogramem z **Rys. 5.4**, można wyliczyć populację N_{out} wejść do piku kalibracyjnego pochodzącej z całkowitej liczby 10×10^5 analizowanych ramek na około czego piku, natomiast występowanie oddzielnym pików grupujących zliczenia może świadczyć o wyodrębnieniu zbierania z różnych obszarów detektora.
Dla tych samych danych populacja wszystkich zarejestrowanych przypadków N_{tot} wynosi około $1,6 \times 10^6$. Zatem procentowy stosunek tych dwóch populacji można obliczyć jako:

$$\frac{N_{ent}}{N_{tot}} \times 100\% = 1,8\%.$$ \hspace{1cm} (5.1)

Jako widać z Rys. 5.5, objętość V_f detektora dająca pełną wydajność zbierania ładunku wynosi:

$$V_f = 3,3^2 \times 2,5 + (3,3 + 1,8)^2 \times 1,8 = 74 \text{ [} \mu\text{m}^3\text{]}.$$ \hspace{1cm} (5.2)

Całkowita objętość V_p piksela wynosi:

$$V_p = 17^2 \times 10,3 = 2976 \text{ [} \mu\text{m}^3\text{]}.$$ \hspace{1cm} (5.3)

Korzystając z wyrażeń (5.2) i (5.3), można stwierdzić, że stosunek objętości dającej pełną wydajność zbierania ładunku do całkowitej objętości piksela wynosi:

$$\frac{V_f}{V_p} \times 100\% = 2,5\%.$$ \hspace{1cm} (5.4)

Liniowy współczynnik absorpcji fotonów o energii 5,9 keV w krzeme wynosi około 0,037 μm$^{-1}$. Wartość ta odpowiada odwrotności iloczynu μ ρ we wzorze (2.9) dla głębokości d podanej w mikrometrach. Średnia odległość diody od powierzchni detektora wystawionej na promieniowanie wynosi w układzie MIMOSA V około 8,3 μm13. Strumień fotonów docierających do głębokości diody jest zatem o około 25%niejszy w stosunku do strumienia obserwowanego bezpośrednio przy samej powierzchni detektora.

Rys. 5.5 Trójwymiarowy geometryczny model struktury piksela zawierający model diody n–well/p–epi wraz z warstwą zubożoną dla napięcia wstecznego 3,0 V.

Uwzględniając osłabienie wiązki fotonów, można dokonać korekty liczebności populacji fotonów, których konwersja zachodzi w diodzie n–well/p–epi.

13 Grubość warstwy epitaksjalnej pozostałe po ścianieniu została zmierzona optycznie jako równe 10,3 μm korzystając z umiejscowienia pół kontaktowych w wytrawionych wnękach.
Po tym zabiegu stosunek populacji wynosi:

\[(1 + 0.25) \times \frac{N_{cut}}{N_{tot}} \times 100\% = 2.4\%. \]

Wartość ta jest bardzo bliska stosunkowi objętości diody i piksela, wyliczonego za pomocą wyrażenia (5.4), co pozwala na dodatkowe potwierdzenie prawidłowości stosowanej metody kalibracji.

Eksperyment wykonany przy użyciu źródła \(^{55}\text{Fe}\) pozwolił również na wstępne oszacowanie współczynnika wydajności zbierania ładunku w ściennym detektorze MIMOSA V. W tym celu wrócono do rekonstrukcji klastrów. Sumowanie sygnałów z sąsiednich pikseli powoduje przesuwanie szerokiego piku, pokazanego na Rys. 5.3, w kierunku większych amplitud na widmach budowanych dla klastrów. W detektorze idealnym, w którym ładunek nie jest tracony w procesie jego transportu do elektrod zbierających, pozycja tego piku zrównałyby się z pozycją piku kalibracyjnego.

W testowanym ściennym detektorze MAPS całkowity ładunek mierzony w klastrze zbudowanym z \(5 \times 5\) sąsiednich pikseli wynosił około 66% ładunku odpowiadającego pozycji piku kalibracyjnego. W analizie danych stwierdzono, że rozważenie jedynie klastrów zbudowanych z \(3 \times 3\) sąsiednich pikseli było już wystarczające, gdyż nie obserwowano przyrostu pozycji piku przy wychodzeniu poza rozmiar klastra złożonego z \(3 \times 3\) piksele. Przykładowe widmo fotonów otrzymane dla klastra składającego się z \(5 \times 5\) sąsiednich pikseli jest pokazane na Rys. 5.6.

Rys. 5.6 Widmo fotonów ze źródła \(^{55}\text{Fe}\) otrzymane dla klastra złożonego z sąsiednich \(5 \times 5\) pikseli.

Wartość wydajności zbierania ładunku (ang. Charge Collection Efficiency – CCE) oszacowana w ten sposób może być jedynie traktowana jako wskaźnik tendencji dla testów wykonanych przy użyciu elektronów, prezentowanych w kolejnych rozdziałach. Natura generacji sygnału w przypadku fotonów i niskoenergetycznych elektronów jest inna. Główna różnica tkwi w głębokości części aktywnej detektora, na której jest generowany ładunek. Ulega zmianie odległość od punktów generacji par \(e^- h^+\) do diod zbierających ładunek. Również w przypadku niższych energii elektronów ładunek jest generowany bliżej granicy pomiędzy Si (warstwa epitaksjalna) a SiO\(_2\) (okno wejściowe), gdzie ze względu na istniejące stany powierzchniowe można by się spodziewać szybszej rekombinacji nośników, a więc większych strat w zbieranym ładunku.
5.3. Obrazowanie przy wykorzystaniu niskoenergetycznych elektronów w testowym systemie HPD

Hybrydowa fotodiody, HPD, jest urządzeniem pozwalającym na detekcję pojedynczych fotonów w zakresie widma UV i światła widzialnego. Co do zasady działania jest to urządzenie podobne do klasycznego fotopowielacza, jednak jest znacznie mniej skomplikowane mechanicznie, jest prostsze w konstrukcji i bardziej kompaktowe. HPD jest też łatwe w użyciu i jest przenośne. HPD składa się z fotokatody, z której uwalniane są fotoelektrony, wnęki próżniowej, w której następuje przyspieszanie tych elektronów, i pojedynczej diody lub matrycy diod pozwalających na detekcję niskoenergetycznych elektronów. HPD, w odróżnieniu od fotopowielacza, umożliwia uzyskiwanie informacji dwuwymiarowej o punkcie uderzenia fotonu w fotokatodę pod warunkiem, że zastosuje się matrycję diod do detekcji fotoelektronów. Działanie urządzenia HPD oparte jest na przyspieszaniu i projekcji na detektor elektronów wyrywanych przez kwanty światła z fotokatody. Wygląd przykładowego elementu HPD wyprodukowanego w CERNie [28][29][30] jest pokazany na Rys. 5.7. W HPD możliwa jest kontrola energii przyspieszanych elektronów, jak również, w przeciwieństwie do źródeł radioaktywnych, operator może decydować zarówno o czasie, intensywności, jak i pozykcji generacji elektronów. HPD oferuje zatem dogodne środowisko do testowania. Biorąc pod uwagę powyższe argumenty, testy ściślej konstrukcji MIMO-S A V w systemie HPD zostały wybrane jako pierwszy krok w demonstracji przydatności tak przystosowanego detektora MAPS do detekcji niskoenergetycznych elektronów i do oszacowania jego parametrów w tym zastosowaniu.

Rys. 5.7 Widok gotowego, w pełni funkcyjonalnego elementu HPD [28].

5.3.1. Opis testowego systemu HPD

Testy możliwości bezpośredniej detekcji elektronów przyspieszanych w polu elektrycznym do energii od kilku do 20 keV i obrazowania przy ich wykorzystaniu były wykonane przy użyciu systemu testowego HPD [31], który był zbudowany i był dostępny do badań w CERNie. System testowy zawierał wszystkie komponenty końcowego urządzenia do
obrazowania przy użyciu pojedynczych fotonów. Główną różnicą było to, że zbiornik próżniowy nie był szczeliną bątką próżniową, ale stalową puszką podłączoną do pompy próżniowej i poddaną ciągłemu odpompowywaniu. Dodatkową różnicę w stosunku do w pełni funkcjonalnego elementu HPD było uproszczenie budowy elektrostatycznych układów przyspieszających oraz ogniskujących elektrony na detektorze. W systemie testowym układ przyspieszający był jednostopniowy, nie było zamontowanych pierścieni ogniskujących.

Widok budowy systemu testowego HPD jest pokazany na Rys. 5.8. Fotokatodą była cienka warstwa CsI, utrzymywana na wysokim potencjale. Na fotokatodę skierowywane były kwanty światła z lampy łukowej wypełnionej deuterem. Fotony mogły być kierowane na fotokatodę w różnych miejscach dzięki zastosowaniu lustra o zmiennej pozieci. Lampa łukowa emitowała kwanty promieniowania UV o długości fali 220 nm, a jej praca była możliwa w kontrolowanym trybie pulstacyjnym. Elektrony emitowane przez fotokatodę były przyspieszane przez różnicę potencjałów pomiędzy fotokatodą a układem MIMOSA V. Detektor był utrzymywany na potencjale masy. Metalowa płyta, podłączona również do potencjału masy, była zainstalowana w pobliżu detektora. Oświetla ona blask układu, jak również płytkę z obwodami drukowanymi. W środku płyty metalowej znajdował się okrągły otwór o średnicy około 1,5 cm, umiejscowiony na wprost matrycy pikseli. Płyta z układem MIMOSA V, taka jak przedstawiona na Rys. 5.2, była umocowana na elemencie Peltiera, którego strona gorąca była w kontakcie ze ścianą puszki próżniowej. Wymuszone chłodzenie pozwalało na lepsze odprowadzenie ciepła z płytki drukowanej, a tym samym na obniżenie prądu upływu w testowym układzie MIMOSA V. W czasie testów była utrzymywana stała temperatura układu około 0°C.

![Rys. 5.8 Widok budowy systemu testowego HPD [31].](image)

Testy były wykonane przy zmienianym napięciu przyspieszającym elektrony w zakresie od 4 keV do 20 keV. System pracował bez żadnego sygnału wyzwalającego, tak że impulsy świetline, pochodzące z wyładowania lampy, przychodziły w dowolnym momencie akwizycji niezsynchronizowane z zegarem taktującym odczyt układu. Częstotliwość impulsów świetlnych z lampy łukowej, mimo że nie była zsynchronizowana z odczytem detektora, była jednak tak dobrana, że była bliska częstotliwości zbierania ramek, co pozwoliło na uniknięcie akwizycji ramek pustych. Częstotliwość zegara taktującego odczyt, \(f_{\text{osc}} \), wynosiła 10 MHz, co skutkowało czasem odczytu jednej ramki równym 25 ms.
5.3.2. Wyniki otrzymane w testowym systemie HPD

Typowe widma amplitudowe sygnałów, jakie były mierzone, są pokazane na Rys. 5.9 i Rys. 5.10 dla napięcia przyspieszającego wynoszącego odpowiednio 17 kV i 20 kV. Dane do histogramów przedstawionych na Rys. 5.9 i Rys. 5.10 były zebrane w temperaturze 0°C i histogramy zawierają po około 60×10³ wejść. Histogramy zostały przygotowane w wyniku analizy danych, w której zastosowano progi na stosunek sygnał do szumu wynoszący 3,5 w poszukiwaniu kandydatów na piksele centralne, a następnie 4,0 na stosunek zsumowanego sygnału z grupy pikseli składających się z 3×3 pikseli, będącej kandydatem na kластer, do zsumowanych w kwadraturze przyczynków szumowych pochodzących od członków grupy. Drugi próg był zawsze testowany na grupie obejmującej piksel centralny i osiem pikseli sąsiadujących z pikselem centralnym i klastry były rejestrowane po przekroczeniu tego progu. Zastosowanie takich cięć oznacza, że w pierwszym przebiegu wyszukiwano kandydatów na piksele centralne, aplikując próg 3,5 na indywidualne wartości SNR z każdego piksela. Następnie klaster był ostatecznie zapisywany, jeśli stosunek zsumowanego sygnału z klastra do jego szumu przekraczał próg 4.0. Histogramy amplitud pokazane są dla klastrów składających się tylko z piksela centralnego, 2×2 pikseli, 3×3 pikseli i 5×5 pikseli.

Do prezentacji histogramów sygnałów na Rys. 5.9 i Rys. 5.10 z klastrów o innych wymiarach niż 3×3 piksele, tj. pojedynczy piksel, 2×2 piksele lub 5×5 pikseli, wybierano sygnały, kierując się kryterium największego SNR w grupie 3×3 pikseli wokół piksela centralnego. Podobne widma otrzymano dla innych napięć przyspieszających niż te, dla których przygotowano histogramy zamieszczone na Rys. 5.9 i Rys. 5.10. Pomiary wykonano dla napięć przyspieszających wynoszących 4 kV, 5 kV, 7,5 kV, 10 kV, 12,5 kV i 15 kV.

Rys. 5.9 Widma amplitudowe sygnałów dla napięcia przyspieszającego 17 kV; histogramy amplitud dla piksela centralnego a), klastra złożonego z 2×2 pikseli b), klastra złożonego z 3×3 pikseli c) oraz klastra złożonego z 5×5 pikseli d); (progi SNR 3,5/4,0, T=0°C, całkowita liczba około 60×10³ wejść).
Rys. 5.10 Widma amplitudowe sygnałów dla napięcia przyspieszającego 20 kV; histogramy amplitud dla pikselca centralnego a), klastra złożonego z 2×2 pikseli b), klastra złożonego z 3×3 pikseli c) oraz klastra złożonego z 5×5 pikseli d); (progi SNR 3,5/4,0, T=0°C, całkowita liczba około 60×10³ wejść).

Dla ilustracji zmiany sygnału w funkcji napięcia przyspieszającego na Rys. 5.11 pokazane jest widmo amplitudowe sygnałów dla wybranego napięcia przyspieszającego 10 kV dla klastra złożonego z 5×5 pikseli.

Rys. 5.11 Widmo amplitudowe sygnałów dla napięcia przyspieszającego 10 kV dla klastra złożonego z 5×5 pikseli.

Z obserwacji histogramów widać wyraźnie rozpływ ładunku na kilka sąsiednich pikseli. Pik przesuwa się w stronę wyższych amplitud, kiedy kolejne piksele z częściami rozpływającej się ładunku są dodawane do konstrukcji klastra. Klaster oznaczany jako 2×2 piksele grupuje 4 piksele z grupy 5×5 pikseli, charakteryzujące się największymi SNR niezależnie od ich kompozycji geometrycznej w klastrze. Na histogramach z Rys. 5.9 i Rys. 5.10 widać wyraźną separację sygnału od szumu. Ogon, który jest obecny w dolnym zakresie amplitud sygnałów, wynika częściowo ze wstecznego rozpraszania elektronów, jak również z detekcji tła, na które składają się głównie fotony promieniowania X, generowanego w objętości.
zbiornika próżniowego oraz pochodzące z hamowania elektronów. Dla analizy sygnałów pochodzących od elektronów padających na detektor MIMOSA V przyjęto pozycję piku sygnału dla każdej wielkości klastrów. Wykorzystano dane o kalibracji detektora, pokazane na Rys. 5.4, gdzie w konwersji 5,9 keV fotonu generowana jest liczba 1640 par e⁻-h⁺ w detektorze i temu ładunkowi odpowiada pozycja piku wynosząca 241 ADCU. Na podstawie tej kalibracji wyliczono liczby zebranych elektronów, N_e, odpowiadające pozycjom pików z histogramów otrzymywanych dla pracy przy kolejnych napięciach przyspieszających jako:

$$N_e = \frac{1640 [e^-] \cdot X_{\text{peak}} [\text{ADCU}]}{241 [\text{ADCU}]},$$

gdzie X_{peak} – pozycja w ADCU piku w rozważanym histogramie.

Wykres amplitud sygnału, wyrażonych w liczbie zebranych elektronów, w funkcji napięcia przyspieszającego dla różnych wielkości klastrów jest pokazany na Rys. 5.12. Zależność amplitudy sygnału od napięcia przyspieszającego jest w pełni liniowa w zakresie od 10 kV do 20 kV. Średnia strata energii w oknie wejściowym z SiO₂ silnie zależy od początkowej energii padającego elektronu. W szczególności strata ta wzrasta wraz z malejącą energią elektronu, głównie z powodu rozpraszania. Strata ta również przyrasta z powodu zależności liniowej straty energii, LET, od energii elektronu. Można założyć, że dla spodziewanej grubości okna wejściowego wynoszącej maksymalnie kilkaset nanometrów, rozpraszanie elektronów w obrębie okna wejściowego dla energii elektronów powyżej 10 keV jest zaniedbywalne. Poprawność takiego założenia znajduje potwierdzenie np. w symulacjach wykonanych przy użyciu programu CASINO [5].

Rys. 5.12 Mierzona amplituda sygnału (pozycja piku w spektrum) w funkcji napięcia przyspieszającego dla różnych wielkości klastrów (połączenie punktów pomiarowych dokonane jedynie dla orientacji) [31].

Jeśli liniowa strata energii byłaby niezależna od energii padającego elektronu i wydajność zbierania ładunku w detektorze wynosiłaby 100% lub była bliska tej wartości, to wykres pokazany na Rys. 5.12 mógłby pozwolić bezpośrednio do eksperymentalnego wyznaczenia grubości okna wejściowego przy wykorzystaniu punktu przecięcia dopasowania
liniowego do punktów pomiarowych z osią rzędnych. Jednak w związku z faktem, iż powyższe założenia nie są spełnione w prowadzonych pomiarach, konieczne są dodatkowe kroki prowadzące do oszacowania grubości warstwy nieaktywnej okna wejściowego. Ilustracja proponowanej konstrukcji jest pokazana na Rys. 5.13. Wybierając energię z zakresu testowego, dla których elektrony przechodzą przez okno wejściowe bez rozproszenia, można określić całkowitą energię E_{act} zdeponowaną w aktywnej objętości detektora jako:

$$E_{act} = E_{1,2,3,4,5} - X_w \cdot LET_{1,2,3,4,5},$$

gdzie:

- X_w – grubość warstwy okna wejściowego (niewiadoma),
- $LET_{1,2,3,4,5}$ – liniowa strata energii E poruszającego się elektronu przy energiach z zakresu od E_1 do E_5 na Rys. 5.13,
- $E_{1,2,3,4,5}$ – energie elektronu z zakresu od E_1 do E_5 na Rys. 5.13.

Wielkości mierzonych sygnałów, przedstawione na Rys. 5.12, odpowiadają tylko części całkowitego ładunku wygenerowanego przez elektron dostający się do warstwy aktywnej, tzn. tej części, która jest zebrała przez diody w pikselach. Dokonując korekcji sygnału o szacunkowe estymowane obniżenie amplitudy spowodowane częściowo wydajnością zbierania ładunku oraz znając wartości liniowej straty energii dla elektronu (3,94 keV/μm, 3,34 keV/μm, 2,92 keV/μm, 2,70 keV/μm, 2,35 keV/μm odpowiednio dla energii elektronów wynoszących 10 keV, 12,5 keV, 15 keV, 17,5 keV i 20 keV) [3], można wykreślić parę punktów, gdzie pierwszą współrzędną jest energia elektronu pomniejszona o stratę w oknie wejściowym, a drugą współrzędną jest skorygowana wielkość mierzonego sygnału. Korekta amplitudy mierzonego sygnału jest zaznaczona jako G_{CCE}. W pierwszym przybliżeniu jako wartość współczynnika korekcji może być użyta liczba 0,66, otrzymana w fazie kalibracji wzmocnienia ze źródłem 55Fe.

Rys. 5.13 Ilustracja metody – konstrukcji – do zapisu zależności pozwalających na oszacowanie grubości pasywnego okna wejściowego z pomiarów.

W wyniku takiej konstrukcji należy się spodziewać, iż prosta przeprowadzona przez wykreślone punkty będzie przechodziła przez punkt o współrzędnych (0,0). Grubość okna wejściowego może zostać oszacowana przez wykonanie dopasowania liniowego z parame-
Dopasowania dokonano dla energii elektronów: 10 keV, 12,5 keV, 15 keV, 17,5 keV i 20 keV. Jako wartość X_W przyjęto tę, która daje najlepszą jakość, tj. najmniejszy błąd dopasowania prostej do zaznaczonych punktów. Otrzymana wartość parametru X_W mieści się pomiędzy 0,30 μm a 0,35 μm. Jest to wartość większa od tej, na jaką szacowano grubość warstwy SiO₂ w czasie produkcji ściennego detektora. Była ona szacowana na około 160 nm. Różnica może wynikać z niedoszacowania grubości w czasie produkcji, jak również z faktu, iż część ładunku generowanego w części przypowierzchniowej na styku Si i SiO₂ jest tracona i efektywnie ta część detektora staje się również martwa.

Obraz lampy UV, otrzymany po rekonstrukcji i zrzutowaniu na wspólne puste tło obrazu wszystkich indywidualnych sygnałów pochodzących od uderzeń elektronów, jest pokazany na Rys. 5.14. Jest to obraz otrzymany dla jednego, wybranego położenia lustra odbijającego fotony UV. Zmieniając położenie lustra, można było obserwować odpowiadające temu przesuwanie się obrazu rejestrowanego przez detektor MIMOSA V.

Rys. 5.14 Obraz lampy uzyskany przez matrycję 1×10^6 pikseli po rekonstrukcji indywidualnych uderzeń i ich projekcji na wspólne podłoże; lewa dolna ćwiartka obrazu została przekonwertowana do obrazu binarnego przy użyciu bardzo niskiego poziomu decyzji cięcia binaryzacji w celu uwidocznienia okrągłego zarysu metalowej płyty ekranującej [31].

Doświadczenia, które przeprowadziłem, potwierdziły zdolność ściennego detektora MAPS do obrazowania z wykorzystaniem niskoenergetycznych elektronów. Na Rys. 5.14
są pokazane cztery ćwiartki układu MIMOSA V. Pełny obraz, składający się z 1×10^6 pikse-
li, został uzyskany w wyniku akwizycji około 1000 ramek. Około 200 indywidualnych
wejści przypadających na każdą ramkę było znajdowanych przez program rekonstruujący
klastry w ćwiartce charakteryzującej się największą intensywnością sygnału. Wyjściowy
obraz lampy jest obrazem w skali szarości o dużej dynamiczne, która jest trudna do oddania
w druku. W celu uwidocznienia cienia pochodzącego od okrągłego otworu w płytcie ekra-
nującej lewa dolna ćwiartka układu została przekonwertowana do obrazu binarnego przy
zastosowaniu bardzo niskich progów.

Właściwe oszacowanie wydajności zbierania ładunku powinno uwzględnić jej zależność
od energii padających elektronów. Skumulowane wyniki pomiarów są pokazane w tabeli
5.1. Zebrane ładunk jest wyrażone w liczbie elektronów, przy uwzględnieniu kalibracji
wzmocnienia otrzymanej w testach ze źródłem 55Fe. Pierwsza liczba w komórce odpowiada
liczbie wskazanej w tabeli, a druga liczba powstaje przez wzięcie 1 × 106 pikseli, które
mogłyby być zebrane, gdyby energia padających elektronów była zużyta całkowicie na generację par $e^-\text{--}h^+$ w warstwie aktywnej detek-
tora. Wydajność zbierania ładunku, biorącą pod uwagę straty w oknie wejściowym, przy
założeniu jego grubości na 160 nm, jest podana w nawiasach.

<table>
<thead>
<tr>
<th>Energia elektronów [keV]</th>
<th>Zebrane ładunk [liczba e$^-$]</th>
<th>CCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,0</td>
<td>sygnał niemożliwy do separacji od szumu</td>
<td>——</td>
</tr>
<tr>
<td>5,0</td>
<td>306</td>
<td>22 (29)</td>
</tr>
<tr>
<td>7,5</td>
<td>952</td>
<td>46 (51)</td>
</tr>
<tr>
<td>10,0</td>
<td>1395</td>
<td>50 (54)</td>
</tr>
<tr>
<td>12,5</td>
<td>1871</td>
<td>53 (56)</td>
</tr>
<tr>
<td>15,0</td>
<td>2381</td>
<td>57 (59)</td>
</tr>
<tr>
<td>17,5</td>
<td>2756</td>
<td>56 (58)</td>
</tr>
<tr>
<td>20,0</td>
<td>3300</td>
<td>59 (61)</td>
</tr>
</tbody>
</table>

Próg energii, dla której generowany sygnał można odseparować od szumu i jest on mie-
przyjazny dla energii padających elektronów do 20 keV nie przekracza wartości progowej 60%. Ten znaczący deficyt wydajności zbierania
ładunku może być przypisany efektowi strat elektronów generowanych w warstwie
epitaksjalnej, które w wyniku dyfuzji termicznej dochodzą do powierzchni detektora (gra-
nicy Si i SiO_2). Każdy obszar graniczny w urządzeniach półprzewodnikowych charaktery-
zuje zwiększoną szybkością rekombinacji nośników. Również w obszarze granicznym
pomiędzy Si a SiO_2, w testowanym detektorze takiego efektu zwiększonej rekombinacji
można się spodziewać. Obniżona wydajność zbierania ładunku wskazuje na niewystarcza-
jącą barierę potencjału, odpychającą elektrony od powierzchni w głąb detektora. Reasumu-
jując, można przypuszczać, że implantacja wykonana w czasie procesu ścieśniania detektora
nie została jednak w pełni aktywowana. Dbałość o odpowiednie ukształtowanie profilu

63
potencjału w obszarze przypowierzchniowym stanowić będzie ważny element przy prowadzeniu dalszych prac nad detektorami MAPS, przystosowanymi do detekcji niskoenergetycznych elektronów.

Uwzględnienie wartości wydajności zbierania ładunku, wyliczonych oddzielnie dla różnych energii padających elektronów, w metodzie pozwalającej na oszacowanie grubości okna wejściowego dało wynik pomiędzy 100 nm a 200 nm. Taka grubość okna wejściowego jest w bardzo dobrej zgodności z wartością zmierzoną w czasie wytwarzania układu ściernego.

Podsumowując, badania przy użyciu systemu testowego HPD pokazały, że ścieniony detektor MAPS może być użyty do wydajnej detekcji i obrazowania z wykorzystaniem niskoenergetycznych elektronów. Należy podkreślić, że były to pierwsze tego typu badania przeprowadzone na świecie. Zaletą detektora jest to, iż jest on wykonany w standardowej technologii VLSI przy użyciu komercyjnie dostępnego procesu CMOS. Jednakże konieczna okazała się adaptacja detektora dla zapewnienia czułości na elektron o energiach z zakresu od kilku keV do kilkudziesięciu keV. Taka adaptacja została wykonana i otrzymano pierwszy detektor MAPS, pozwalający na obrazowanie przy użyciu elektronów o progu czułości dochodzącym do 5 keV.

5.4. Autoradiografia źródła radioaktywnego nasyconego trytem

Autoradiografia promieniowania β jest dobrze utrwaloną techniką dwuwymiarowego obrazowania próbek pochodzenia biologicznego. Ma ona swoje korzenie w latach pięćdziesiątych dwudziestego wieku, a dokładnie w roku 1956, kiedy naukowcy z Brookhaven National Laboratory (BNL), USA, odkryli nową metodę badań DNA przez wiązanie radioizotopy trytu do tymidyny [32]. Próbki biologiczne dostępne są w formie żeli protein otrzymanych w wyniku elektroforezy, fragmentów DNA, pojedynczych komórek, fragmentów tkanki itp. Do oznaczania próbki biologicznych tzw. markerami β wykorzystuje się następujące izotopy: 3H (niska energia), 14C, 35S (średnia energia) i 32P oraz 125I (wysoka energia.). Spośród tych wspomnianych znaczników najtrudniejsza jest wydajna detekcja trytu z powodu niskiej energii kinetycznej emitowanych cząstek β. Maksymalna energia elektronów wynosi 18,6 keV, średnia energia rozpadu jest równa 5,7 keV, podczas gdy najbardziej prawdopodobna energia, z jaką zostanie wyemitowany elektron, wynosi zaledwie 3,8 keV w przypadku źródła 3H.

W poniższym rozdziale pokazane jest nowe podejście do autoradiografii cząstek β przy użyciu ścienionego detektora MAPS przystosowanego do detekcji niskoenergetycznych elektronów. Do demonstracji możliwości obrazowania użyto detektora MIMOSA V. Źródłem sygnału w testach było źródło polimerowe znaczone 3H.

5.4.1. Przegląd stosowanych dotychczas metod detekcji cząstek β emitowanych przy rozpadzie trytu

Najbardziej rozpowszechnioną techniką detekcji trytu jest użycie tzw. płynnych scyntylatorów, których zliczenia mogą być odczytywane po prostu gołym okiem lub przy użyciu

W niektórych badaniach wskazane jest umieszczanie próbek bezpośrednio na detektorze, co w rezultacie może prowadzić do zanieczyszczenia detekторa. W takich przypadkach istnieje szczególnie zapotrzebowanie na tani detektor, który mógłby być używany jednorazowo. Przy masowej produkcji cena pojedynczych sztuk detektorów MAPS może być bardzo niska, pozwalając na ich jednorazowe używanie.

5.4.2. Symulacja generacji sygnału

Generacja sygnału w ściśleonym detektorze MIMOSA V była symuluowana przy użyciu dedykowanego programu do analizy Monte Carlo CASINO [5]. Geometria detektora została zadaną jako układ dwóch warstw, odpowiednio 160 nm SiO$_2$ i 10 μm Si. Elektrony o określonej energii uderzały w detektor z kierunku normalnego do powierzchni detektoru. Symulacje przy użyciu programu CASINO są jedynie symulacjami przybliżonymi, dokładne symulacje układu źródło–detektor powinny uwzględniać kątowy rozkład emitowanych cząstek β, włączając w to efekt autoabsorpcji zachodzącej w objętości samego źródła. Celem symulacji, wykonanych przy użyciu CASINO, było jednak jakościowe ustalenie spo-
dziwnego progu energii, po którego przekroczeniu sygnał byłby możliwy do zaobserwowania oraz zbadanie podstawowych właściwości tego sygnału. Rozkłady maksymalnego zasięgu elektronów wraz ze spodziewanymi amplitudami sygnałów były ekstrahowane z wyników symulacji. Przykład wyników symulacji ilustrujących generację sygnału w detektorze dla wybranych energii elektronów, tj. 3 keV, 4 keV i 18,6 keV jest pokazany na Rys. 5.15. Elektrony o energii kinetycznej poniżej 3 keV są zupełnie zatrzymywane w nieaktywnej warstwie SiO₂. Nie uczestniczą one w generacji sygnału obserwowanego w detektorze. Kiedy energia elektronów przekroczy 4 keV, niektóre spośród elektronów przechodzą przez okno wejściowe. Jednakże maksymalna energia, jaka jest deponowana w aktywnej objętości detektora, wynosi jedynie około 20% początkowej energii elektronów. Stosując to przybliżenie, można wyliczyć, iż (4 keV×0,2)/0,0036 eV/e⁻⁺h⁺≈220 e⁻⁺h⁺ jest dostępnym do zebrania w tym przypadku. Wartość ta przedstawia próg sygnału możliwego do detekcji w układzie MIMOSA V. Przywołując wprowadzone we wcześniejszych rozdziałach parametry układu MIMOSAV, tj. szum pojedynczego piksela wynoszący poniżej 25 e⁻ ENC oraz spodziewany rozpływ ładunku w klastrze zbudowanym z 5×5 sąsiednich pikseli, można oszacować próg detekcji. Wyliczona wartość ENC dla klastra wynosi około 125 e⁻ ENC. Daje to SNR poniżej 2 dla elektronów o energii 4 keV. Dodatkowo SNR jest jeszcze pomniejszony z powodu niepełnej wydajności zbierania ładunku.

Rys. 5.15 Generacja sygnału od uderzających elektronów 3 keV a), 4 keV b), 18,6 keV c) w ścinionym detektorze MIMOSA V [45].

14 Energia jest deponowana wzdłuż toru poruszającego się elektronu. Strata energii w rzeczywistości nie jest równomierna, gdyż zależy od prędkości elektronu. Jednak na potrzeby oszacowania progu detekcji te szczegóły zostały pominięte.
Maksymalny zasięg elektronów w detektorze i strata energii w oknie wejściowym zależą od energii elektronu, z jaką uderza on w detektor. Przykład symulacji pokazującej rozkład zasięgu elektronów w krzemi o maksymalnej energii emisji ze źródła 3H, wynoszącej 18,6 keV, jest pokazany na Rys. 5.16. Analiza tak przeprowadzona jest równoważna założeniu, że nie zachodzi autoabsorpcja w materiale źródła.

![Rys. 5.16 Znormalizowany rozkład zasięgu elektronów w krzemi o początkowej energii przy wejściu do ośrodka wynoszącej 18,6 keV uzyskany w wyniku symulacji przy użyciu programu CASINO.](image)

Z przeprowadzonej symulacji wynika, że dominująca część elektronów, emitowanych ze źródła z maksymalną energią 18,6 keV, może wpadać jedynie od 1,5 μm do 2,5 μm w głębokości hamowania elektronów o tej energii wynoszącej około 4 μm. Za różnicę tę odpowiada zjawisko rozpraszania elektronów. W wyniku rozpraszania tory, po których poruszają się elektrony, są wielokrotnie zakrzywiane.

5.4.3. Źródło 3H, stanowisko testowe i organizacja testów

Źródłem używanym w eksperymentach był polimerowy płytka (3H polybutylmethacrylate [46]). Płytka miała wymiary (1,0×1,0×0,1) cm3. Wygląd źródła, umieszczanej w systemie pomiarowym na detektorze, jest pokazany na Rys. 5.17. Radioaktywność wynosiła około 200 kBq. Cała objętość źródła była równomiernie radioaktywna. Źródło było umieszczane bezpośrednio na detektorze i eksperyment został przeprowadzony przy ciśnieniu normalnym. Cienka 100 μm folia miedziana z kwadratowym otworem o wymiarach około (5×5) mm2 była położona pomiędzy źródłem a detektoarem, jako maska w celu otrzymania wzoru do obrazowania. Płytki obwodów drukowanych, na której był zamontowany detektor, była przymocowana do masywnego miedzianego postumentu, który był chłodzony do temperatury około 0°C. Całość została zamknięta w szczelnym pudełku aluminiowym chroniącym przed dostępiem światła i wilgoci. Chłodzenie zostało zastosowane w celu zmniejszenia prądów upływu diod w pikselach i zupełnej eliminacji efektu nasycańy pikseli. Detektor mógł pracować bez chłodzenia, jednakże konieczna była konieczna regulacja napięć na detektorze i aktualizacji napięć referencyjnych dla wzmacniaczy zaimplementowanych w detektorze. Przy pracy bez chłodzenia konieczne były również użycie mniejszego wzmocnienia sygnału analogowego, aby móc dopasować sygnał do maksymalnego zakresu napięć wejściowych dla przetworników analogowo–cyfrowych. Zastosowanie chłodzenia pozwoliło na utrzymanie stałej temperatury układu przez wiele godzin akwizycji.
danych, niezależnie od warunków zewnętrznych, wynikających z włączenia lub wyłączenia klimatyzacji w pomieszczeniu.

Rys. 5.17 Polimerowe źródło ([^3]H) polibutylen metakrylowy) używane w eksperymencie ułożone na miedzianym ekranie pokrywającym detektor a), detektor zamocowany na płycie obwodów drukowanych ze źródłem położonym bezpośrednio na jego powierzchni, całość zamknięta w aluminiowym pudełku chroniącym przed dostęmem światła b) [45].

System zbierania danych bazował na karcie akwizycji opisanej w rozdziale 4. Dane były przesyłane do komputera typu PC z procesorem taktowanym zegarem 2,66 GHz. Do przetwarzania danych służył przygotowany przeze mnie specjalnie do tego celu program, który pozwalał na rekonstrukcję klastrów sygnałów pochodzących z uderzeń cząstek β na bieżąco w miarę przesyłania danych do komputera przez łącze USB. Wybór przetwarzania danych bezpośrednio po ich odebraniu przez komputer był podyktowany chęcią uniknięcia przechowywania ogromnej ilości danych na dysku (dla przypomnienia: 1 obraz ⇒ (512×512 piksele × 16 bitów)=512 MB) oraz dążeniem do otrzymania bieżącego obrazu źródła bezpośrednio na monitorze w trakcie eksperymentu.

W wyniku przetwarzania danych na dysk zapisywane były jedynie sygnały ze zrekonstruowanych klastrów piksele wraz z ich pozycjami. Program pozwalał na adaptacyjne obliczanie piedestałów, \(P_n \), i szumu \(N_n \). Ponieważ wartości mogły ulegać zmianom w czasie długiego zbierania danych, były one wyliczane adaptacyjnie indywidualnie dla każdego piksela. Mianowicie, pętla, \(P_n \), i szum, \(N_n \), w \(n \)-tym kroku akwizycji były wyliczane według następujących wzorów:

\[
P_n = \frac{1}{w} \left((w-1)P_{n-1} + D_n \right),
\]

\[
N_n = \sqrt{\frac{1}{w} \left((w-1)\left(N_{n-1}\right)^2 + \left(D_n - P_n - CM_n\right)^2 \right)},
\]

gdzie: \(w \) – krok, w jakim wartości piedestałów i szumów są uaktualniane,
\(D_n \) – nowa dana pochodząca z detektora,
\(CM_n \) – wartość poziomu wspólnego, liczona jako średnia lub dopasowanie do wielomianu niskiego stopnia ze względu na czasochłonne obliczenia dla wszystkich piksele z matrycy po uprzednim odjęciu piedestałów.
Ustanowiona empirycznie wartość kroku w równa 25 była z powodzeniem używana
w trakcie eksperymentu, zapewniając stabilną pracę algorytmu. Dodatkowa prosta metoda
obcinająca sygnały wystające powyżej trzykrotnie wartości aktualnego szumu stosowana
była do eliminacji pikseli zawierających sygnał do obliczeń pideastów i szumu w danym
kroku w celu uniknięcia wpływu sygnałów fizycznych na wyliczane wartości statystyczne.
Klastry pikseli zawierających sygnał fizyczny były identyfikowane przez zastosowanie
cięcia na SNR. Operacja ta była dwustopniowa. Jak już wcześniej zostało powiedziane,
w pierwszym podejściu niższa wartość cięcia była używana w celu znalezienia wszystkich
pikseli-kandydatów na piksele centralne, a następnie drugie, wyższe cięcie służyło do te-
stowania sum sygnałów z pikseli z najbliższego sąsiedztwa kolejnych kandydatów na pik-
sele centralne. Po użyciu drugiego cięcia właściwe klastry pikseli mogły być ostatecznie
formowane. Na tym etapie, jako „żywe” utrzymywane były klastry budowane wokół ka-
dego piksele będącego kandydatem na piksel centralny. W końcowym kroku procedury
eliminowano te klastry, których piksele centralne należały do innych klastrów uprzednio
już zatwierdzonych. Jako punktu wyjściowego używano klastra zbudowanego wokół piske-
la centralnego charakteryzującego się najwyższym SNR, następnie posuwano się w kierun-
ku mniejszych wartości SNR. Należy zaznaczyć, iż ten algorytm był przygotowany niejako
na wyrost, gdyż spodziewane prawdopodobieństwo nakładających się na siebie klastrów
było tak niskie, że taką eventualność można było wykluczyć dla aktywności źródła, jakim
dysponowano. Zaprezentowany w skrócie algorytm pozwałał na wolną od błędów systema-
tycznych rekonstrukcję klastrów sygnałów. Akwizycja danych była ze względów praktycz-
nych ograniczona jedynie do jednej ćwiartki detektora. Nie było to utrudnieniem, gdyż
jedna ćwiartka była większa niż źródło.

5.4.4. Wyniki autoradiografii i ich dyskusja

Szum detektora został zmierzony na około 25 e⁻ ENC, biorąc „pusty” bieg bez źródła na
początku akwizycji. Cięcia na SNR zostały ustanowione na 3,5 odpowiednio na poszuki-
wanie pikseli kandydatów na piksele centralne w klastrach i 4,0 na testowanie sum sygna-
lów z klastrów (3×3 piksele). Odnosząc wysokość cięcia do zebranego ładunku, otrzymuje
się wartość około 300 e⁻, co odpowiada, biorąc pod uwagę niepełną wydajność zbierania,
początkowej energii elektronu równej 5 keV.

Wynik trzydziestodwugodzinnej ekspozycji jest pokazany na Rys. 5.18. Należy zazna-
czyć, że eksperyment trwał długo, ale celem w tym przypadku było pokazanie możliwości
zastosowania detektorów MAPS w tym konkretnym eksperyencie, a nie optymalizacja
czasu jego trwania.

W czasie ekspozycji zebrano i przeanalizowano około 85×10⁵ obrazów. Analiza pozwó-
liła na rekonstrukcję około 3000 klastrów. Szybkość zbierania danych była jedynie około
1,35 ramki/s. O powolnym tempie zbierania danych w bieżącym eksperyencie decyduwa-
ły dwa czynniki mniej więcej w równym stopniu. Pierwszym z nich był przesyl danych do
komputera po łączu USB, a drugim programowa analiza danych na komputerze.

Zwiększenie efektywności, tj. lepsze wykorzystanie całkowitego czasu zbierania danych
może być w przyszłości dość łatwo poprawione poprzez zastosowanie połączenia do kom-
putera o większej przepustowości, jak również poprzez przesunięcie cięcia analizy danych
w stronę implementacji sprzętowej. Efektywny czas ekspozycji, τ_{\text{eff}}, może być wyliczony,
gdy znana jest częstotliwość zegara taktującego odczyt pikseli, która wynosiła 10 MHz

69
w bieżącym eksperymencie. Zatem czas ten wynosi:

\[\tau_{\text{expo}} = \frac{512 \times 512 \times 85000}{f_{\text{ch}} \times 60 \text{s/min}} \approx 35 \text{ min}, \]

gdzie: \(f_{\text{ch}} \) – częstotliwość zegara taktującego odczyt pikseli.

\[(5.10) \]

Rys. 5.18 Obraz źródła jako wynik ponad trzydziestogodzinnej ekspozycji [45].

Histogramy zarejestrowanych sygnałów, uwzględniając następujące wymiary kластrów: tylko piksel centralny, 2×2 piksele, 3×3 piksele i 5×5 piksele, są pokazane na Rys. 5.19. Estymacja krańcowej, maksymalnej energii, otrzymana przy użyciu danych kalibracji wzmocnienia uzyskanych ze źródłem \(^{55}\)Fe oraz informacji o wydajności zbierania ładunku, daje wynik około 17,9 keV. Częstość zliczeń tła była około \(0,6 \times 10^3 \) zliczeń×mm\(^2\)×s\(^{-1}\). Wartość zliczeń tła została wyliczona na podstawie czasu ekspozycji równego 35 min i jest konsystentna z cięciem na SNR na poziomie pięciu odchyleń standardowych. Próba oszacowania wydajności detekcji jest utrudniona ze względu na brak dokładnych symulacji systemu składającego się ze źródła i detektora. Liczba zliczeń, jaka powinna być zarejestrowana przez detektor, wynosiła od kilku do kilkunastu tysięcy z sygnału o aktywności 200 kBq. Wielkość tego oszacowania uwzględnia czas ekspozycji, fakt, że źródło mogło oświetlać jedynie część detektora, autoabsorpcję emitowanych elektronów w samym źródle, efektywny kąt przestrzenny, z którego pochodzą elektrony docierające do detektora, oraz próg energii, powyżej którego elektrony generują sygnał mierzalny w detektorze. Efekt autoabsorpcji elektronów w materiale źródła redukuje efektywną grubość źródła, z której elektrony mogą docierać do detektora, do około 1 μm.

Podsumowując, można stwierdzić, że przeprowadzony przez mnie eksperyment i analizy potwierdziły przydatność zmodyfikowanego przez ścinianie detektora MAPS do trudnego zadania obrazowania przy wykorzystaniu cząstek \(\beta \) emitowanych przez źródło nasycony \(^{3}\)H.
Rys. 5.19 Histogramy zarejestrowanych sygnałów z klastrów o wymiarach: tylko piksel centralny a), 2×2 piksele b), 3×3 piksele c) i 5×5 pikseli d) [45].

5.5. Bezpośrednia detekcja elektronów w mikroskopie elektronowym

Główną zaletą używania elektronów jako sond w dziedzinach badań takich, jak chemia, nauka o materiałach, fizyka fazy skondensowanej czy biologia, jest silne oddziaływanie elektronów z materią. Fakt silnego oddziaływania elektronów pozwala na analizy strukturalne, dokonywane w bardzo krótkich czasach akwizycji i przy silnie ograniczonych ekspozycjach na wiązki. Krótkie czasy ekspozycji i niewielkie intensywności wiązki pozwalają uniknąć zniszczeń radiacyjnych, jakie mogą nastąpić w analizowanych próbkach.

W niniejszym rozdziale omawia się szerszą charakterystykę detektorów MAPS dokonaną w skaningowym mikroskopie elektronowym oraz wyniki obrazowania osiągnięte w transmisyjnym mikroskopie elektronowym. W tych testach uwzględniono badania detekcji pojedynczych elektronów, przeprowadzono akwizycję wzorów dyfrakcyjnych oraz dokonano oszacowania rozdzielczości przestrzennej.
5.5.1. Przegląd dotychczas stosowanych metod rejestracji obrazów w mikroskopie elektronowej

Blonna fotograficzna, pozwalająca osiągnąć najlepszą rozdzielczość, mierzoną za pomocą funkcji przenoszenia składowych sinusoidalnych obrazu (ang. *Modulation Transfer Function – MTF*) [47], była w przeszłości najczęściej używanym medium do obrazowania z wykorzystaniem elektronów w mikroskopie elektronowym. Typowa rozdzielczość obrazów na blonie fotograficznej wynosi nawet powyżej 100 linii/mm przy współczynniku modulacji wynoszącym 0,1. Obraz na blonie fotograficznej tworzony jest w wyniku akumulacji lub, inaczej mówiąc, całkowania efektów pochodzących od pojedynczych elektronów. Wielkość ziaren filmu nie jest jednorodna, waży się od ulamków mikrometra do kilku mikrometrów; dawka promieniowania konieczna do aktywacji ziarna zależy od jego wielkości, ulożenia itp. Odpowiedź filmu nie jest w pełni liniowa i obróbka filmu wymaga nieporęcznych operacji, takich jak: mechaniczne ładowanie kaset z kliszami, wywoływanie i skanowanie obrazów. Operacje te są czasochłonne, wymagają sporych nakładów pracy i kosztów i ostatecznie czynią blonę filmową niepraktyczną w wielu aplikacjach w mikroskopii elektronowej. Inną opcją, mającą zastąpić blonę fotograficzną, są tzw. płyty obrazujące (ang. *imaging plates*). Płyty te zostały wprowadzone do stosowania pod koniec lat osiemdziesiątych ubiegłego wieku. W porównaniu z filmem płyty obrazujące charakteryzują się doskonałą liniowością, ale jest to ukupione gorszą rozdzielczością w połączeniu z koniecznością obróbki w celu uzyskania ostatecznego obrazu. Obróbka płyty obrazującej polega na podaniu płyty działaniu podwyższonej temperatury, a następnie rejestracji obrazu powstałego ze światła widzialnego emitowanego z obszarów płyty aktywowanych strumieniem elektronów.

Na przestrzeni ostatnich dziesięciu lat bardzo dużym zainteresowaniem cieszy się cyfrowa awizycja obrazów. Wiele prac poświęcono opracowaniu metod obrazowania opartych na w pełni cyfrowym rejestracji obrazów na potrzeby mikroskopii elektronowej, np. [48]. Celem jest osiągnięcie zdolności obrazowania przy zachowaniu parametrów jakościowych obrazu uzyskiwanych przy użyciu blony fotograficznej lub płyta obrazujących z jednoczesnym natychmiastowym dostępem do obrazu lub sekwencji obrazów. Cyfrowa rejestracja obrazów jest preferowana wszędzie tam, gdzie duże zbiory obrazów muszą być zarejestrowane w celu zaspokojenia potrzeb analiz statystycznych, np. w tomografii elektronowej pojedynczych cząstek i/lub elektronów, lub wtedy, kiedy szybka odpowiedź detektora jest konieczna dla rejestracji przejściowych procesów dynamicznych i procesów charakteryzujących się krótkimi czasami życia. Inną możliwością związaną z otrzymywaniem obrazu w czasie rzeczywistym jest ewentualność wykorzystania informacji pochodzącej z obrazu w czasie rzeczywistym do korekcji ustawień mikroskopu, wyboru pola widzenia itp.

Urządzenia CCD, stosowane w kamerach oferujących bezpośrednie wyjście cyfrowe, stanowią obecnie alternatywny sposób, używany powszechnie, dla blon fotograficznych. Najnowsze CCD są dostępne w pojedynczych modułach o rozmiarach do 4096×4096 pikseli [49]. W niektórych podejśćach mniejsze moduły CCD mogą być składane w większe matryce do obrazowania z minimalnym, bliskim zeru, obszarem martwym na łącznym. Wartość współczynnika modulacji wynosząca 0,1 (10%) oznacza, że projekcja na detektor wzoru linii daje obraz, w którym rejestrowana intensywność w obszarze cieni spada do 10% intensywności w obszarze nieprzysłoniętym.
Dostępne są układy CCD, w których część odczytowa skupiona jest wzdluż jednego boku układu. Mimo elastyczności w składaniu matryc o dużych rozmiarach, wysokiej czułości, liniowości itp., urządzenia CCD są zbyt wrażliwe na efekty radiacyjne, aby mogły być używane do bezpośredniej detekcji elektronów w mikroskopii elektronowej. Z tego powodu konieczne jest sprzęganie elementów CCD ze scyntylacyjnymi ekranami z fosforu lub ze scyntylatorów organicznych w systemie obrazującym. Zatem najpierw dokonuje się konwersji energii padających elektronów na światło widzialne i w kolejnym kroku fotony światła widzialnego mogą być obrazowane przy użyciu CCD. Zazwyczaj podział matrycy CCD na piksele o bardzo małych rozmiarach nie może być w pełni wykorzystany z powodu poświaty towarzyszącej każdemu zdarzeniu uderzenia elektronu w ekran fosforowy. Poświata ta, związana z rozpraszaniem emitowanego światła w scyntylatorze, jak również z wielokrotnymi zmianami toru elektronu przebiegającego przez scyntylator, typowo przekracza swoim zasięgiem rozmiar piksela urządzenia CCD rejestrującego obraz.

W celu lepszego wykorzystania wysokiej granularności elementu CCD stosuje się często wiązkę włókien światłowodowych o kształcie stożkowym, zwężających się ku końcowi (ang. tapered fibre optics), pomiędzy ekranem scyntylacyjnym a elementem CCD [50]. Pomniejszenie obrazu uzyskane we włókach światłowodowych pozwala na wydajniejsze wykorzystanie małych pikseli dostępnych obecnie elementów CCD. Jednakże użycie koniecznych włókien światłowodowych nie niweluje problemu pogorszenia rozdzielczości przestrzennej z powodu rozpraszania światła w ekranie scyntylacyjnym. Światło ulega również rozproszeniu na granicy scyntylator–włókno światłowodowe oraz włókno światłowowe–CCD. Rozpraszanie to skutkuje pogorszeniem MTF oraz gorszą detekcyjną rozdzielczością kwantową (ang. Detective Quantum Efficiency – DQE) w stosunku do hipotetycznego pomiaru, gdyby taki mógł być wykonany bezpośrednio na scyntylatorze. Typowo dla najlepszych elementów CCD MTF spada do poziomu poniżej 0,1 dla częstotliwości przestrzennej około 20 linii/mm. Wartość częstotliwości przestrzennej około 20 l/mm dla systemu CCD obrazowania z wykorzystaniem elektronów jest znacznie niższa niż częstotliwość Nyquista samego elementu CCD, która jest równa połowie odwrotności odległości pomiędzy sąsiednimi pikselami (ang. pitch). MTF może być polepszona poprzez zastosowanie cięższych scyntylatorów, aczkołwiek odbija się to negatywnie na czułości, prowadząc do pogorszenia DQE.

Postęp dokonany na przestrzeni ostatnich lat w zaawansowaniu technicznym mikroskopów elektronowych uwzględnia osiągnięcie rozdzielczości przestrzennej nowo projektowanych mikroskopów pozwalających na otrzymywanie „fotografii” struktur DNA. Również rozdzielczości energetyczne spektrometrów osiągnęły poziom poniżej 0,1 eV [52]. Z tymi osiągnięciami w parze ideę wprowadzania nowych, lepszych algorytmów korekcji i analizy danych. Rozwój detektorów pozostał jednak znacząco w tyle. Wykorzystywane obecnie w mikroskopii elektronowej detekatory stały się czynnikiem ograniczającym możliwości obrazowania. Konieczność zaproponowania zupełnie nowego typu detektora jest potrzebą chwili i tematem prac badawczych. Metodą alternatywną do metody detekcji, wymagającej konwersji przejściowej w scyntylatorze, jest bezpośrednia konwersja energii elektronu w pary e–h+ w aktywnej objętości detektora półprzewodnikowego. Rozpływ sygnału do sąsедnich pikseli powinien być w tej metodzie znacznie ograniczony, ponieważ nie zacho-

dzi pośrednia konwersja do światła widzialnego. Spodziewane polepszenie rozdzielczości może być kilkukrotnie. Dla uzyskowania tych realizacji konieczne jest sięgnięcie po nowe rozwiązania koncepcyjne i technologiczne.
5.5.2. Dwa podejścia do rejestracji obrazów w mikroskopii elektronowej

Zasadniczo detektory do wykorzystania w mikroskopie elektronowej mogą być podzia-
lone na dwie klasy. Pierwszą klasą są urządzenia bazujące na zliczaniu pojedynczych ude-
rzeń elektronów. Natomiast druga klasa urządzeń wykorzystuje akumulację sygnału (czasto
sha się zamiennie sformułowania dla takiej pracy „integrua sygnału”). Detektor może
pracować jako urządzenie zliczające, pod warunkiem że szum własny systemu detekcyjne-
go jest na tyle niski, iż możliwe jest wyzwalanie licznika w odpowiedzi na pojedyncze
kwany promieniowania. System zliczający wymaga zastosowania odpowiedniego układu
dyskryminującego; stosunek sygnału do szumu powinien być na tyle duży, aby możliwe
było zliczanie z wydajnością detekcji bliską 100% przy jak najmniejszym udziale zliczeń
pochodzących od szumu.

Możliwość implementacji systemu zliczającego impulsy zależy od względnego stosunku
natężenia promieniowania (częstotliwości zdarzeń) i czasowych parametrów odpowiedzi
układów elektronicznych przetwarzających sygnały oraz czasu martwego w pracy matrycy
obrazującej. Niezależnie od spełnienia kryteriów szumu i szybkości odpowiedzi, realizacja
układów zliczających wymaga z definicji znacznej liczby tranzystorów w przeliczeniu na
pojedynczy piksel. Zasadniczo realizacja taka możliwa jest z użyciem układów analogowo-
cyfrowych CMOS o minimalnym poborze mocy. Implementacja układów zliczających jest
nieporównanie łatwiejsza w hybrydowych detektorach pikselowych, które buduje się łącząc
detektor pikselowy, np. wykonany z wysokorezystywnego krzemu, z oddzielnym scalonym
układem odczytowym przy użyciu techniki bondingu. Inną nowoczesniejszą opcją jest
wykorzystanie słupków Cu–Sn i stopu eutektycznego Cu3Sn tworzącego się pod wpływem
temperatury [53]. Niezależnie od użytej techniki łączenia detektor hybrydowy, który zlicza
opojedyncze impulsy, pozwala na otrzymywanie obrazów wirtualnie niezawierających szu-
u. Jednakże ceną, jaką się płaci, są duże rozmiary piksela, sięgające często kilkadziesięt-
ciu mikrometrów.

Nierzozwiązany też pozostaje problem pogorszonej DQE z powodu rozpływu ładunku
pomiędzy sąsiednie piksele oraz sama konstrukcja detekторa wymaga uciążliwego i niegwia-
rantującego stoprocentowego użysku łączenia [55][56][57]. Detektor hybrydowy reprezen-
tuje z reguly materiał o niepomiernie całkowitej grubości (kość z elektronicznym układem
odecyzyjnym, materiał łączący z reguly o wysokiej liczbie atomowej, płyta detektora itp.)
wystarczającej do znacznej degradacji rozdzielczości przestrzennej w zakresie energii uży-
ywanych w mikroskopii elektronowej. Detektorem zaliczającym się do drugiej grupy, czyli
typo integracyjnego, są omawiane wcześniej elementy CCD, jak również proponowane
ostatnio MAPS. Jak już wspominałem, detektory MAPS, przeżywające rozkwit w zakresie
zastosowań dla światła widzialnego, były zaproponowane i z powodzeniem przetestowane
również jako urządzenia pozwalające na detekcję pojedynczych relatywistycznych cząstek
jonizujących w zastosowaniach do śledzenia torów cząstek w fizyce wysokich energii.
Sukces detektórow MAPS we wspomnianych dziedzinach nasunął ideę ich wykorzystania
do detekcji i obrazowania ze wykorzystaniem elektronów w mikroskopie elektronowej.
Granularność oraz poziom szumów w klasycznych układach MAPS mogą być w pełni
adefiniwane dla użycia w mikroskopie elektronowej.

Detektory MAPS oferują wysoką rozdzielczość, mogą być wydajnie ściśnięte, co może
mić w mikroskopie elektronowej duże znaczenia dla ograniczenia wielkości obszaru,
w którym jest generowany ładunek w wyniku wielokrotnego rozpraszania padających elektronów oraz obniżenia rozpraszania wstecznego elektronów. Rozpraszanie wsteczne elektronów jest jednym z głównych powodów degradacji jakości obrazów w mikroskopie elektronowym. Detektory MAPS charakteryzują się również znacznie lepszymi osiągami niż CCD w zakresie szybkości odczytu oraz odporności na promieniowanie, gdyż konwersja zebranego ładunku na mierzalny sygnał elektryczny zachodzi w miejscu generacji ładunku bez jego transportu na obrzeża detektora. Pomyśl zastosowania detektorów MAPS w mikroskopii elektronowej był już początkowo rozważany [58][59]. Nowym elementem, który przedstawiam w mojej pracy, jest użycie po raz pierwszy detektora ścienionego i porównanie wyników z detektorem o pełnej grubości. Jest to pierwsza kompletna analiza możliwości zastosowania MAPS do uzyskiwania obrazów w mikroskopii elektronowej potwierdzona badaniami eksperymentalnymi.

5.5.3. Motywacja do przeprowadzenia testów dwóch wersji układu MIMOSA V zainstalowanych w mikroskopie elektronowym

Detektory MAPS były badane jako potencjalne urządzenia mogące zastąpić inne techniki obrazowania w TEM. Mikroskopy elektronowe wykorzystane w omawianych testach są pokazane na Rys. 5.20 a i b. Pierwszy z nich to skaningowy mikroskop elektronowy JBM–6500F [60], a drugi to transmisyjny mikroskop elektronowy JEOL–4000EX [60], oba są w posiadaniu Brookhaven National Laboratory, Upton, USA. Detektory MAPS mogą być szczególnie interesujące w TEM z powodu cechującego je bardzo niskiego szumu, wysokiej czułości i rozdzielczości przestrzennej. Należy tutaj podkreślić, że wewnętrzna struktura układu MIMOSA V była przystosowana do detekcji pojedynczych relatywistycznych cząstek obdarzonych ładunkiem. Parametry detektora, jak: zakres dynamiczny, szybkość odczytu, rozpływ ładunku między sąsiednimi pikselami itp. nie były przygotowane pod konkretnie wymagania mikroskopu elektronowego. W związku z tym faktem konieczne było odwoływanie się do pewnych zabiegów, pozwalających na obejście tego braku optymalizacji, jak np. składanie ostatecznego obrazu z wielu zebranych ramek w celu uniknięcia nasycania pikseli.

W obecnym stadium rozwoju MAPS, w szczególności biorąc pod uwagę nieoptymalizowany pod to zastosowanie detektor MIMOSA V, detektory te nie są idealnym rozwiązaniem. Takim rozwiązaniem byłby wirtualnie bezszumny system o dużą szybkością odczytu, rozprzężonym odcztym między sąsiednimi pikselami itp. nie były przygotowane pod konkretnie wymagania mikroskopu elektronowego. W związku z tym faktem konieczne było odwoływanie się do pewnych zabiegów, pozwalających na obejście tego braku optymalizacji, jak np. składanie ostatecznego obrazu z wielu zebranych ramek w celu uniknięcia nasycania pikseli.

Pośród wnioskowanych rozwiązań dyskusje dotyczą: nowej generacji detektorów MAPS, możliwych do budowy przy wykorzystaniu techniki standardowej CMOS [61], użycia nowej techniki scalania układów elektronicznych, tj. techniki 3D (ang. 3D integration) [62][123], czy też budowy detektora wykonanego w technice CMOS SOI [64]. Raczej niepodlegającym dyskusji jest ukierunkowanie prac na projekt piksela wyposażonego w układ przedzwarczniającego ładunkowego, dyskryminator oraz w liczniki do zliczania pojedynczych uderzeń. Projekt detektora w technice CMOS SOI, wykonany przeze mnie jako konsekwencja przedstawionych tu eksperymentów, jest szczegółowo omówiony w rozdziale 9.
5.5.4. Opis systemu testowego i montażu detektora w mikroskopie elektronowym

Do testów w mikroskopach elektronowych wykorzystane były dwie wersje układu MI-MOSA V. Pierwsza wersja, nazywana FS (ang. front–side), była standardowym detektem z elektronicznym układem odczytowym, warstwami połączeń metalowych (Al, Cu, Ti, V) oraz warstwą pasywacji (SiO$_2$, Si$_2$N$_3$) położonymi nad warstwą aktywną detektora. Całkowita grubość tych warstw wynosiła około 15 μm i warstwy te znajdowały się na drodze elektronów przed wejściem do warstwy epitaksjalnej. Całkowita grubość detektora FS wynosiła około 120 μm. Druga wersja, nazywana tutaj dla rozróżnienia BS (ang. back–side), była ścieńioną od dołu wersją detektora MIMOSA V. Ścienie detektora było wykonane do osiągnięcia warstwy epitaksjalnej. Detektor BS był omawiany wcześniej przy okazji detekcji niskoenergetycznych elektronów.

Grubość warstwy aktywnej dla detekcji elektronów wynosiła 14 μm i 10 μm odpowiednio dla wersji FS i BS detektora MIMOSA V. Niewielkie grubości warstwy aktywnej, tj. w zakresie pomiędzy 10 μm a 20 μm są preferowane dla ograniczenia rozchodzenia się wiązki na boki w wyniku wielokrotnego rozpraszania oraz dla zapewnienia jednocześnie wymaganej czułości. Układ detektora był zamontowany na niewielkiej płytcie obwodów drukowanych wyposażonej w analogowe układy buforujące sygnały. Płyta była umieszczona w komorze próżniowej odpowiednio SEM i TEM. Widok hermetycznego kominka, wykonanego ze stali nierdzewnej, dopasowanego do systemu próżniowego mikroskopu elektronowego JEOL–400EX z zainstalowanym detektorem MIMOSA V jest pokazany na Rys. 5.21. Płyta aluminiowa o grubości 1,5 mm z otworem wielkości jednej czwartej układa była używana w celu osłonięcia pozostałych części przed elektronami w czasie testów. Połączenie z systemem zbierania danych było możliwe przy użyciu przejściówki.
w postaci złącza DB–25 odpowiadającego standardom próżni używanej w mikroskopie elektronowym. Płytkę z detektorem była przymocowana do miedzianego postumentu, który był chłodzony za pomocą elementu Peltiera. Płytkę obwodów drukowanych była pełna w przypadku wersji BS detektora MIMOSA V oraz posiadała okrągły otwór wielkości 9 mm bezpośrednio pod układem detektora w przypadku wersji FS. Zakres używanych energii elektronów był następujący: od kilku keV do 30 keV w SEM oraz od 40 keV do 400 keV w TEM. Temperatura pracy nie była stabilizowana w czasie testów w SEM. Z powodu utrudnionej wymiany ciepła, wynikającej z montażu w kolumnie mikroskopu, była ona znacznie wyższa od temperatury pokojowej. Chłodzenie było natomiast skutecznie stosowane w testach w TEM i temperatura czujnika wynosiła około 0°C.

5.5.5. Testy układu MIMOSA V wykonane w skaningowym mikroskopie elektronowym

W mikroskopie skaningowym testowana była tylko wersja BS układu MIMOSA V. Wybór ten był podyktowany faktem, iż tylko detektor posiadający odpowiednio cienkie okno wejściowe mógł zapewnić wymaganą wydajność detekcji elektronów w zakresie energii od kilku keV do 30 keV. Taki zakres energii jest typowy dla SEM.

5.5.5.1. Podział ładunku między sąsiednimi pikselami

Pierwsze testy w JSM–6500F zostały wykonane dla dwóch wybranych wartości energii, tj. 6 keV i 25 keV. Wiązka była zogniskowana tak, że rozmiar płamki na detektorze był mniejszy od 10 nm. Wiązka była przesuwana w krokach w obydwa prostopadłych kierunkach w obrębie wybranego piksela, na który celowano, oraz przechodząc do jego najbliższych sąsiadów. Prąd wiązki był obniżony do najmniejszej wartości, jaka mogła być używana w systemie. Układ odcinający wiązkę, w formie elektromechanicznej migawki (ang. blanking system), był używany w celu włączania wiązki na około 150 ns. Czas ten był najkrótszym, jaki można było uznać za powtarzalny. Schemat montażu detektora w mikroskopie skaningowym wraz z uproszczonym widokiem układu odcinającego wiązkę i widokiem elektromagnetycznych układów odchylających jest pokazany na Rys. 5.22. Układ

![Rys. 5.21 Kolnierz ze stali nierdzewnej dopasowany do systemu próżniowego mikroskopu elektronowego JEOL–4000EX z zainstalowanym detektorem MIMOSA V.](image)
odcinający wiązkę był synchronizowany z cyklem odczytu detektora. Sygnał wyzwalający otwarcie światła układu odcinającego był wysyłany przez układ zbierania danych w zaprogramowanym czasie po zakończeniu fazy resetu detektora. Analizy rozpływów ładunku pomiędzy piksele sąsiednie oraz pomiar PSF (ang. Point Spread Function) [47] były wykonane dla prądów wiązki dających efektywnie przepływy do kilkudziesięciu elektronów padających w namierzony piksel w jednym 150 ns impulsie. Pozycja wiązki nad wybranym przypadkowo pikselem była zmieniana w obydwu prostopadłych kierunkach w krokach 2 μm lub 4 μm. W trakcie pomiarów wykonano przynajmniej 10 kroków w każdym kierunku.

Rys. 5.22 Schemat ideowy montażu detektora w mikroskopie skaningowym.

Sygnały były rejestrowane przez zapis na dysku komputera jedynie wartości dla namierzonych pikseli oraz ich sąsiadów. Dla każdej pozycji wiązki zapisywano 100 akwizycji w celu uniezależnienia się od fluktuacji szumu, położenia wiązki itp., tak aby móc wyliczyć stabilną wartość średnią sygnału dla każdego położenia wiązki. Przykładowe odpowiedzi zarejestrowane dla klastra sąsiednich pikseli dla wiązki o energii 25 keV są pokazane na **Rys. 5.23** w postaci trójwymiarowych wykresów słupkowych. Sygnał jest uśredniony ze 100 ramek i znormalizowany do maksymalnej wielkości mierzonej w klastrze. Odległość pomiędzy krokami, o jakie przesuwana jest wiązka dla uzyskania wykresów pokazanych na **Rys. 5.23**, wynosi 4 μm wzdłuż jednej osi matrycy pikseli.

Rys. 5.23 Trzy odpowiedzi w tym samym klastrze sąsiednich pikseli, znormalizowane do sygnału mierzonego w pikselu centralnym, zarejestrowane dla wiązki elektronów przechodzącej przez środek piksela centralnego w krokach oddalonych o 4 μm; wiązka celująca w piksel (3,3), przy czym bliżej piksela (3,2) a), prawie w środku piksela centralnego b) i bliżej piksela (3,4) c).
Łatwo można zaobserwować „rozlewanie się” sygnału na sąsiednie piksele, wynikające z podziału ładunku w procesie jego zbierania, do pikseli przylegających do piksela centralnego. Można skonstatować, że maksymalny ładunek zebrany na namierzonym pikselu nie przekracza 60% całkowitego ładunku w klastrze.

5.5.5.2. Rozdziełość przestrzenna – pomiar PSF

Spośród kilku możliwych podejść przyjety obliczenie sygnałów mierzonych na namierzonym pikselu dla przesuwającej się wiązki elektronów dla każdej z rozważanych pozycji. Wyniki pomiarów są pokazane na Rys. 5.24 i Rys. 5.25 odpowiednio dla energii wiązki wynoszącej 25 keV i 6 keV. Amplituda sygnałów została znormalizowana do całkowitego sygnału zsumowanego w obrębie klastra. Kształt PSF, zgodnie z oczekiwaniami, jest bardzo bliski obrysu krzywej Gaussa.

Rys. 5.24 PSF estymowana dla wiązki elektronów skanującej wybrany piksel w kierunku poziomym a) i pionowym b) dla energii wiązki równie 25 keV (amplituda normalizowana do całkowitego sygnału w klastrze).

Rys. 5.25 PSF estymowana dla wiązki elektronów skanującej wybrany piksel w kierunku poziomym a) i pionowym b) dla energii wiązki równie 6 keV (amplituda normalizowana do całkowitego sygnału w klastrze).

Ponadto, co również było oczekiwane, PSF jest symetryczna dla pomiarów wykonanych podczas przesuwania wiązki w obydwu prostopadłych kierunkach. Dopasowanie punktów pomiarowych z krzywą Gaussa dało następujące wartości parametru odchylenia standardowego: $\sigma = 12.5 \mu m$ i $\sigma = 12.9 \mu m$ dla energii 25 keV odpowiednio dla poziomego i pionowego kierunku skanowania. Analogiczne dopasowania dla wiązki o energii 6 keV dało w wyniku $\sigma = 11.2 \mu m$ i $\sigma = 12.0 \mu m$ odpowiednio dla poziomego i pionowego kierunku skanowania. Nieznacznie lepsza PSF dla niższej wartości energii może wynikać z większe-
go zasięgu elektronów o energii 25 keV w krzemie, a co za tym idzie, generacji ładunku w postaci większej „chmury” przy wejściu elektronu do objętości detektora w przypadku większej jego energii. Odniesienie do kierunków skanowania poziomego i pionowego jest całkowicie umowne. Mierzona PSF była symetryczna wzdłuż obydwóch prostopadłych osi przechodzących przez środek piksela. Położenie diody w pikselu przyjęto za jego środek geometryczny. Do wyznaczenia tego środka przyjęto kryterium osiągania największej amplitudy sygnału zmierzonej przy przemieszczaniu wiązki w obrębie piksela. Symetria PSF wzdłuż testowanych kierunków odzwierciedla zgodny z oczekiwaniam brak zależności zbierania ładunku od rozmieszczenia tranzystorów w pikselu.

5.5.5.3. Widma energetyczne pojedynczych elektronów

Następnym krokiem w pracach była próba rekonstrukcji sygnałów pochodzących z przypadków uderzeń pojedynczych elektronów w detektor. Testy zmierzające do rekonstrukcji widma pojedynczych elektronów wykonane były przy minimalnych osiągalnych intensywnoścach wiązki. Było to do kilku elektronów uderzających w detektor w czasie pełnego odczytu ramki. Przykłady histogramów sygnałów sumowanych z klastrów składających się z 5×5 pikseli, otrzymane dla dwóch niewiele różniących się intensywnościami wiązki elektronów, są pokazane na Rys. 5.26. Na histogramach widać wyraźnie piki umiejscowione na pozycjach będących wielokrotnościami pozykcji pierwszego piku. Wynikają one z uderzeń więcej niż jednego elektronu zgodnie ze statystycznym rozkładem Poissona w namierzony piksel w czasie odczytu jednej pełnej ramki.

Dopasowanie populacji poszczególnych pików do rozkładu Poissona pozwoliło na oszacowanie wartości średnich liczby elektronów uderzających w piksel. Wartości te wynoszą około 0,5 e⁻/piksel i około 2 e⁻/piksel b), otrzymane dla wiązki o energii 25 keV.

Odpowiedź detektora na uderzenie więcej niż jednego elektronu, przy założeniu, że mały do czynienia z systemem liniowym, jest konwolucją odpowiedzi na pojedynczy elek-
tron. Widma pojedynczych elektronów, jak widać na Rys. 5.9, posiadają „ogony” rozciągające się w kierunku niskich amplitud. Ogony te grupują znaczną część populacji rejestrowanych przypadków. Dodatkowo, wydajność zbierania ładunku w ściennym detektorze MIMOSA V została oszacowana w uprzednich badaniach jedynie na około 60%. Razem te dwa efekty stanowią o tym, że rejestracja pojedynczego elektronu nie zawsze daje ten sam jednoznaczny sygnał. Oznacza to, że wraz ze zwiększaniem liczby uderzających elektronów, zwiększa się zakres niejednoznaczności i coraz trudniej jest określić liczbę faktycznie rejestrowanych elektronów. Zmniejsza się stosunek sygnału do szumu po stronie detektora, dając w wyniku pogarszającą się wartość DQE.

Celem weryfikacji przedstawionego wyżej toku rozumowania wynikającego z analizy danych eksperymentalnych i potwierdzenia przyczyn zaniku możliwości rozróżniania poszczególnych pików w budowanych widmach, wyniki pomiarów testowych zostały zaoszczędzone w prostej analizie MonteCarlo. Wyniki tej analizy są przedstawione na Rys. 5.27a. Sposób symulacji wykorzystany w analizie MonteCarlo składał się z następujących dwóch kroków:

1. Dla różnych wielokrotności uderzeń elektronów wygenerowano programowo listę amplitud sygnałów zgodnie z funkcją gęstości prawdopodobieństwa otrzymaną na podstawie danych przedstawionych na Rys. 5.9. Wynik takiej jednej generacji jest pokazany na Rys. 5.27a. W celu osiągnięcia jak największej niezależności zdarzeń i danych generowano osobną listę dla każdego elektronu, w taki sposób że, jeżeli z rozkładu Poissona wynika, że w danym momencie dwa elektrony uderzają w piksel, to amplituda dla pierwszego elektronu była brana z pierwszej listy, a amplituda dla drugiego elektronu pochodziła z listy drugiej,

2. Następnie, posługując się generatorem liczb losowych podlegających rozkładowi Poissona, generowano poszczególne przypadki dla założonych średnich wartości rozkładu. Wypadkowy sygnał obliczono, jako sumę sygnałów składowych, biorąc amplitudy odpowiednio z list dla kolejnego numeru generowanego przypadku.

Na Rys. 5.27 przedstawiono wyniki analizy MonteCarlo dla wartości średnich rozkładu wynoszących odpowiednio: 0,5 e⁻/piksel, 1 e⁻/piksel, 2 e⁻/piksel, 3 e⁻/piksel i 4 e⁻/piksel. Można zauważyć, że wyniki osiągnięte w symulacjach pokazują lepszą rozróżnialność pików pochodzących od wielokrotnych uderzeń fotonów w ten sam piksel niż te uzyskane na podstawie danych zebranych w testach. Powodem takiej obserwacji może być niedokładność oszacowania wartości średniej liczby padających fotonów dla danych eksperymentalnych. Tym niemniej, jak było oczekiwane, analizy MonteCarlo pokazały, że obecność „ogona” w widmach pojedynczych elektronów powoduje powstanie szerokiego tła uniemówliwiającego rozróżnienie poszczególnych pików pochodzących od kolejnych wielokrotności uderzeń elektronów dla wartości średnich intensywności wiązki wynoszących zaledwie 4 e⁻/piksel.

Głównym czynnikiem odpowiedzialnym za istnienie ogona w części widma dla pojedynczych elektronów jest rozpraszanie wsteczne elektronów. Elektrony odbite od detektora zostają tylko część swojej energii początkowej w detektorze, pozostała część energii jest unoszona na zewnątrz detektora po rozproszении wstecznym. Populacja elektronów
odbijanych może dochodzić nawet do kilkunastu procent w zależności od energii elektronu padającego.

Rys. 5.27 Wyniki symulacji MonteCarlo służącej do wyznaczenia kształtów histogramów dla uderzeń elektronów zgodnie z rozkładem Poissona dla sześciu różnych wartości średnich rozkładu; widmo pojedynczych elektronów a), widmo dla wartości średniej wynoszącej 0,5 e⁻/piksel b), widmo dla wartości średniej wynoszącej 1 e⁻/piksel c), widmo dla wartości średniej wynoszącej 2 e⁻/piksel d), widmo dla wartości średniej wynoszącej 3 e⁻/piksel e), widmo dla wartości średniej wynoszącej 4 e⁻/piksel f).

Przykład symulacji ilustrującej omawiany efekt rozpraszania wstecznego elektronów, wykonanej w programie CASINO dla wybranej energii 20 keV, jest pokazany na Rys. 5.28. Na rysunku tym przedstawione jest widmo energetyczne elektronów ulegających wstecznemu odbiciu, znormalizowane do całkowitej liczby padających elektronów na detektor. Wartość uzyskana po zsumowaniu ze wszystkich przedziałów energetycznych daje znaczącą populację przypadków, wynoszącą około 16%, dla których zachodzi wsteczne odbicie przy tej energii elektronów.
5.5.6. Testy układów MIMOSA V wykonane w transmisyjnym mikroskopie elektronowym

W transmisyjnym mikroskopie elektronowym, który pracuje przy dużo wyższych energiach wiązki elektronów niż mikroskop skanningowy, testami objęto obydwie wersje (BS i FS) układu MIMOSA V. Program testów uwzględniał proste obrazowanie transmisyjne próbek, używając równoległej wiązki elektronów, obrazowanie wzorów dyfrakcyjnych, analizy widm pojedynczych elektronów dla różnych energii wiązki oraz analizy rozdzielczości przestrzennej obrazowania możliwych do osiągnięcia dla obydwu wersji układu MIMOSA V również dla różnych energii wiązki elektronów.

Rys. 5.28 Rospraszanie wsteczne elektronów symulowane w programie CASINO dla energii elektronów 20 keV.

5.5.6.1. Rejestracja obrazów transmisyjnych

Dwa przykłady obrazów transmisyjnych pola jasnego (ang. bright field image) są pokazane na Rys. 5.29. Pierwszy obraz został otrzymany przy użyciu wersji BS układu MIMOSA V przy energii wiązki wynoszącej 40 keV. Jest to obraz cienkiego krzyżatu MoO₃. Do otrzymania drugiego obrazu posłużyła próba nadprzewodnika wysokotemperaturowego YBa₂Cu₃O₇₋δ (YBCO). Drugi obraz został zarejestrowany dla energii wiązki wynoszącej 400 keV przy użyciu wersji FS układu MIMOSA V. Wybór wersji układu MIMOSA V do otrzymania obrazów transmisyjnych uzależniony był od energii wiązki. W szczególności wersja FS układu MIMOSA V nie pozwala na uzyskiwanie obrazów dla niskich energii wiązki ze względu na obszar martwy znajdujący się nad warstwą epitaksjalną. Obydwa obrazy były otrzymane w wyniku złożenia 200 oddzielnych ramek. Sumowanie pojedynczych ramek było konieczne dla uzyskania końcowych obrazów o dobrej jakości. Pomimo tego faktu uzyskane obrazy charakteryzują się dużym zakresem dynamicznym. Wartość ENC szumu dla pojedynczego piksela, odniesiona do jego wejścia, została zmierzona po- nownie na około 25 e⁻. Wiedząc, że pojedynczy elektron o energii 400 keV generuje około 1600 par e⁻–h⁺ na swoim przejściu przez 14 μm grubości warstwy aktywnej detektora (dla wersji FS) [65], można wyliczyć, że piksele w najjaśniejszej części obrazu na Rys. 5.29b zgromadziły do kilkunastu tysięcy pojedynczych padających elektronów. W przypadku obrazu uzyskanego z niską energią wiązki, liczba padających elektronów była mniejsza, ale ładunek generowany w detektorze był większy. Ze względu na fakt, iż układ MIMOSA V był zaprojektowany do pracy do śledzenia torów pojedynczych cząstek, maksymalna liczba nośników ładunku, jaka mogła być zebrana w pikselu zanim dochodziło do nasycenia, była bardzo ograniczona [16]. W praktyce poziom nasycenia był osiągany dla układu MIMO-
SA V już dla kilkudziesięciu elektronów padających na jeden piksel. Dlatego konieczne było dla uzyskania odpowiedniego kontrastu w rejestrowanych obrazach sumowanie informacji z kolejnych ramek. Jednak z powodu bardzo niskiego szumu własnego detektoru, akumulacja szumu, która ma miejsce w sumowaniu poszczególnych ramek, miała bardzo mały wpływ na jakość otrzymanego obrazu w wyniku sumowania. Spowodowane to było faktem, że akumulacja szumu zachodzi wolniej niż przyrost wartości sygnału w procesie sumowania. Podsumowując, praca z większą liczbą oddzielnie wziętych a następnie złożonych razem obrazów, kiedy każdy z tych obrazów składowych był zarejestrowany przy bardzo małym prądzie wiatki, zapewniała brak nasycenia pikseli w układzie MIMOSA V, co oznacza końcowo zachowanie dobrej dynamiki obrazu.

Rys. 5.29 Przykłady obrazowania transmisyjnego (ang. *bright field imaging*) obraz kryształu MoO₃ otrzymany przy użyciu wersji BS układu MIMOSA V a), obraz nadprzewodnika wysokotemperaturowego YBCO otrzymany przy użyciu wersji FS układu MIMOSA V b).

5.5.6.2. Obrazy wzorów dyfrakcyjnych

Zdolność rejestracji obrazów wzorów dyfrakcyjnych przez detektor MIMOSA V była testowana przy energiach wiązki wynoszących pomiędzy 100 keV a 400 keV. Próbką używaną do otrzymywania wzorów dyfrakcyjnych była ta sama cząstka nadprzewodnika wysokotemperaturowego YBCO, jakie używano do otrzymywania obrazów transmisyjnych. Przykłady zarejestrowanych obrazów wzorów dyfrakcyjnych, otrzymywanych przy użyciu wersji FS układu MIMOSA V przy energii wiatki 400 keV są pokazane na **Rys. 5.30**. Każdy pojedynczy obraz z **Rys. 5.30** został uzyskany jako złożenie pewnej liczby pojedynczych ramek; odpowiednio: 250 ramek dla obrazu a (TEM23), 500 ramek dla obrazu b (TEM30A), 750 ramek dla obrazu c (TEM27) i 600 ramek dla obrazu d (TEM25). Czas odczytu pojedynczej ramki wynosił tylko 25 ms. Jednakże tzw. „wąskim gardłem”系统u, spowalniającym testy, była transmisja danych pomiędzy systemem akwizji danych a komputerem i sam zapis danych na dysk. Powodowało to, że czasy akwizacji poszczeżnych obrazów dochodziły do kilku minut. Na obrazach oznaczonych c (TEM27) i d

16 Sumowanie szumu zachodzi proporcjonalnie do pierwiastka kwadratowego z liczby ramek uwzględnionych w sumowaniu, co jest prawidłowe przy założeniu, że szum w każdej ramce jest nieskorelowany.
(TEM25) widać wyraźnie linie wzorów Kikuchiego [66], co podkreśla dokładność rejestracji obrazów przez detektor MIMOSA V. Sumowanie większej liczby ramek zbieranych przy małej intensywności wiązki elektronów zostało wykorzystane, jak poprzednio, do zapobieżenia nasycaniu się pikseli i zwiększenia zakresu dynamicznego rejestrowanych obrazów.

Rys. 5.30 Przykłady wzorów dyfrakcyjnych otrzymanych dla próbki YBCO; wzory dyfrakcyjne dla wiązki zbieżnej i równoległej (ang. convergence and parallel beam diffraction patterns).

Dla porównania jakości obrazów dyfrakcyjnych uzyskanych za pomocą układu MIMOSA V z obrazem otrzymanym przy użyciu techniki klasycznej z płytką obrazową dokonano rejestracji jednego obrazu referencyjnego z użyciem tej samej próbki i tych samych warunków w przeprowadzeniu doświadczenia. Obraz wzoru dyfrakcyjnego dla próbki YBCO przy wiązce zbieżnej otrzymany z użyciem płyty obrazowej w mikroskopie JEOL 4000EX został pokazany na Rys. 5.31. Warunki ekspozycji były typowe dla płyty obrazowej. Prąd wiązki elektronów był ponad 1000 razy większy niż przy testach z układem
MIMOSA V. Jakość obrazów jest porównywalna, a konieczna intensywność wiązki do ich otrzymania w przypadku układu MIMOSA V była dużo mniejsza.

Rys. 5.31 Obraz referencyjny wzoru dyfrakcyjnego dla próbki YBCO przy wiązce zbieżnej otrzymanej z użyciem płyty obrazowej w mikroskopie JEOL 4000EX. Obraz został otrzymany przy typowych warunkach ekspozycji dla płyty obrazowej, tzn. prąd wiązki był ponad 1000 razy większy niż przy testach z układem MIMOSA V.

Konfrontacja dwóch metod otrzymania obrazu pokazała, że detektory MAPS mogą stanowić bardzo efektywne rozwiązanie do rejestracji wzorów dyfrakcyjnych w mikroskopie elektronowym. Konkluzją z przeprowadzonych pomiarów jest, że wysoka czułość piksela pozwala na pracę przy prądach wiązki, które są wielokrotnie, nawet kilka rzędów wielkości, mniejsze niż te, które są wymagane do aktywacji filmu lub płyty obrazowej przy tym samym poziomie zawartej informacji. Możliwość pracy z bardzo małymi prądami wiązki elektronów jest szczególnie cenna dla obrazowania próbek biologicznych lub nanostruktur, będących niezwykle czułymi na zniszczenia radiacyjne.

5.5.6.3. Widma energetyczne pojedynczych elektronów

Dane pozwalające na analizę widm pojedynczych elektronów zostały zebrane przy minimalnych osiągalnych w mikroskopie prądach wiązki oraz przy takim sterowaniu ogniskowaniem mikroskopu, że wiązka była rozmyta równomierne w sposób zamierzony po dużym obszarze. W wyniku takich ustawień można było łatwo odróżnić przypadki nienakładających się na siebie pojedynczych uderzeń elektronów na płaszczyźnie detektora. Testy wykonano dla obydwu wersji detektora w zakresie energii wynoszącym od 40 keV do 400 keV. Dane, tj. pojedyncze obrazy, były analizowane przy użyciu dedykowanego programu, identycznego z tym, jaki był użyty do radiografii źródła \(^3\)H, opisanej w rozdziale 5.4. Program pozwalał na rekonstrukcję klastrów pikseli z sygnałem. Klastry były tworzone przy zastosowaniu cięć na SNR dla danych po odjęciu piedestalów. Przykład otrzymanego widma elektronów o energii 40 keV dla wersji BS układu MIMOSA V jest pokazany na Rys. 5.32. Zmierzony współczynnik konwersji ładunku na rejestrowany sygnał wynosił...
18 e-/ADC. Widmo zawiera główny, wyraźnie widoczny, pik wynikający z pełnej konwersji 40 keV energii padającego elektronu na parę e⁺–h⁻. Zasięg 40 keV elektronów wynosi około 10 μm w krzemie. Widoczny jest również drugi, znacznie mniejszy pik, którego położenie odpowiada dwukrotniej amplitudzie sygnału dla pierwszego piku. Istnienie drugiego piku wynika z przypadków, kiedy dwa elektrony uderzają w tę samą pozycję.

Rys. 5.32 Widmo elektronów dla energii wiązki 40 keV dla wersji BS układu MIMOSA V dla klastra składającego się z 5×5 pikseli.

Widma elektronów dla energii 100 keV i 400 keV, zmierzone przy użyciu wersji FS układu MIMOSA V, są pokazane na Rys. 5.33. Współczynnik konwersji ładunku na mierny sygnał wynosił w tym przypadku 9,2 e-/ADC. Widmo elektronów o energii 100 keV pokazuje, iż najbardziej prawdopodobna wartość sygnału wynosi około 450 ADC. Zasięg 100 keV elektronów wielokrotnie przekracza grubość warstwy aktywnej detektora MIMOSA V. Na otrzymanych widmach wyraźnie można zaobserwować długi „ogon” zawierający sporą część populacji. „Ogon” ten rozciąga się do obszaru sygnałów o wysokich amplitudach. Obeznosć tego „ogona” wynika z wielokrotnego rozpraszania elektronów, jakie ma miejsce w aktywnej objętości detektora oraz z rozpraszania wstecznego elektronów. Elektrony rozproszone wstecznie mogą ponownie wchodzić do objętości aktywnej detektora, przyczyniając się do powstawania dodatkowego sygnału. Istnieje również niezerowe prawdopodobieństwo, że niektóre elektrony mogą zdeponować całą swoją energię, tj. 100 keV, w warstwie aktywnej. „Ogon” rozciąga się do amplitud sygnału około 3000 ADC, po czym gwałtownie jest ucięty. Wartość 3000 ADC odpowiada pełnej energii 100 keV zdeponowanej w aktywnej objętości detektora. Elektrony o energii 400 keV są bliskie punktu minimalnej jonizacji dla elektronów. Elektron o tej energii ulega również znacznie słabszemu rozpraszaniu. Fakty te są wyraźnie widoczne na wizmie dla energii 400 keV. Najbardziej prawdopodobna amplituda sygnału nie przekracza 200 ADC. Kształt widma elektronów zbliżony jest do rozkładu Landaua [3]. Oczekiwana teoretyczna wartość stosunku pomiędzy poziomami najbardziej prawdopodobnych amplitud sygnału dla elektronów o energiach 100 keV i 400 keV wynosi około 2 razy (liniowa strata energii w krzemiu wynosi 0,74 keV/μm i 0,4 keV/μm odpowiednio dla energii 100 keV i 400 keV [65]). Przesunięcie najbardziej prawdopodobnej wartości amplitudy sygnałów...
dla elektronów o energii 100 keV w kierunku wyższych amplitud niż wynikałoby to ze stosunku liniowych strat energii dla 100 keV i 400 keV wynika z faktu, iż efektywna długość śladu elektronu w objętości aktywnej detektora jest średnio dłuższa przy energii 100 keV niż 400 keV ze względu na efekt wielokrotne rozpraszan.

Rys. 5.33 Widmo elektronów dla energii wiązki 100 keV dla wersji FS układu MIMOSA V a) Widmo elektronów dla energii wiązki 400 keV dla wersji FS układu MIMOSA V b) dla klastra składającego się z 5×5 pikseli.

Progi na wartość SNR, zastosowane do otrzymania histogramów z Rys. 5.32 i z Rys. 5.33, wynosiły odpowiednio 4 dla znalezienia kandydatów na piksele centralne i 6 dla testowania sygnału z klastra złożonego z 3×3 sąsiadujących pikseli utworzonych wokół piksela centralnego.

W czasie testów wyraźnie zauważono, że rozdzielczość energetyczna, mierzona jako szerokość pików spektralnych, zależała w sposób nieliniowy od energii padających elektronów. Pomiar wykonane z układem BS pokazały, że rozdzielczość energetyczna poprawia się, poczynając od pierwszej testowanej wartości wynoszącej 20 keV, osiągając najlepszą wartość dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity dostępny sygnał rósł wraz z rosnącą energią elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity słupki oznaczają energię elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity słupki oznaczają energię elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity słupki oznaczają energię elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

W czasie testów wyraźnie zauważono, że rozdzielczość energetyczna, mierzona jako szerokość pików spektralnych, zależała w sposób nieliniowy od energii padających elektronów. Pomiar wykonane z układem BS pokazały, że rozdzielczość energetyczna poprawia się, poczynając od pierwszej testowanej wartości wynoszącej 20 keV, osiągając najlepszą wartość dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity słupki oznaczają energię elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity słupki oznaczają energię elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

W czasie testów wyraźnie zauważono, że rozdzielczość energetyczna, mierzona jako szerokość pików spektralnych, zależała w sposób nieliniowy od energii padających elektronów. Pomiar wykonane z układem BS pokazały, że rozdzielczość energetyczna poprawia się, poczynając od pierwszej testowanej wartości wynoszącej 20 keV, osiągając najlepszą wartość dla energii wynoszącej około 60 keV. Poprawa rozdzielczości energetycznej w tym zakresie energii wynikała z faktu całkowitej konwersji energii elektronów w pary e−–h+ w aktywnej objętości detektora.

Całkowity słupki oznaczają energię elektronów, natomiast szum i procentowe straty w zbieraniu ładunku pozostawały stałe. Wzrost energii powyżej 100 keV, dla której elektryny mają większy zasięg niż grubość aktywnej objętości detektora, a jednocześnie podlegają silnemu rozpraszaniu, prowadził do pogorszenia się rozdzielczości energetycznej. Jednak pogarszanie się rozdzielczości energetycznej ze wzrostem energii zatrzymuje się dla energii wynoszącej kolejnego progu. Zaobserwowano, że piki stawały się ponownie większe i rozkłady przybierały formę bliską rozkładowi Landau dla energii wynoszących powyżej 200 keV. Dla tego zakresu energii można przyjąć, że trajektorie elektronów stają się linią prostą. Rozdzielczość pików spektralnych ścisłe wpływa na jakość obrazowania. Obecność długich ogonów w widmach pojedynczych elektronów, rozwijających się prawie 10 razy powyżej wartości najbardziej prawdopodobnej, jak widać na Rys. 5.33, działa jak dodatkowe źródło szumu w obrazach rejestrowanych za pomocą detektora sumującego sygnały z poszczególnych przypadków17. Należy tu nadmienić, że ten typ szumu byłby nieobecny, jeśli użyty byłby detektor zliczający impulsy nieza-

17 Nie jest to szum elektroniki, lecz jest to niepewność w określeniu liczby zarejestrowanych elektronów na podstawie sygnałów zsumowanych z wielu zdarzeń.
leźnie od ich amplitud. O ile ten typ szumu jest zupełnie nie do zaakceptowania w obrazach tomograficznych o wysokiej rozdzielczości i o wysokim kontrastie, to może on nie mieć większego znaczenia w innych przypadkach, takich jak np. rejestracja obrazów dyfrakcyjnych, w których nacisk kładzie się na położenie elementów wzoru, a nie na bezwzględną amplitudę rejestrowanego sygnału.

Na podstawie przeprowadzonych testów można skonkludować, że rozkład wielkości sygnału pochodzącego od pojedynczego elektronu jest głównym źródłem szumu w obrazach transmisyjnych uzyskiwanych przy użyciu detektorów MAPS. Szum układu elektronicznego jest niski. Nie jest on dominujący nawet przy uwzględnieniu jego addytywności w wyniku akwizycji większej liczby ramek.

Wielkość DQE, używana do określania jakości układu obrazującego pod względem szumowym, jest zdefiniowana jako stosunek wartości stosunku sygnału do szumu na wejściu systemu pomiarowego (rejestrowany obraz) do wartości stosunku sygnału do szumu na jego wejściu (źródło sygnału) [48]:

\[
DQE = \frac{NEQ}{Q} = DQE = \left(\frac{S}{N} \right)^2 = \left(g \sqrt{N} / \sigma_o \right)^2, \tag{5.11}
\]

gdzie:
- \(NEQ \) – liczba cząstek lub kwantów światła lub promieniowania X konieczna do uzyskania założonego stosunku sygnału do szumu
- \(Q \) – rzeczywista liczba cząstek lub kwantów promieniowania użyta do uzyskania obrazu
- \(S / N \) – stosunek sygnału do szumu na wejściu systemu obrazującego,
- \(S / N \) – stosunek sygnału do szumu na wyjściu systemu obrazującego,
- \(g \) – średni sygnał dla jednego elektronu,
- \(N \) – liczba padających elektronów,
- \(\sigma_o^2 \) – wariancja szumu na wyjściu (wielkość \(\sigma_o^2 \) obejmuje rozrzut wynikający ze statystyki Poissona \(g \sqrt{N} \) oraz całkowity szum dodany w detektorze).

Definicja (5.11) obowiązuje dla procesu na wejściu systemu obrazującego, który podlega rozkładowi Poissona a wyrażenie sygnału i szumu na wejściu wynika z zależności związanych z tym rozkładem, natomiast szum na wyjściu jest sumą przycznków z wszystkich procesów prowadzących do powstawania rozrzutów w rejestrowanych sygnałach.

W opisywanym systemie do obrazowania przy użyciu elektronów wartość bezwzględna szumu na wejściu jest zdominowana (pomijając czynnik Fano [3] i rozrzut wartości wydajności zbierania ładunku) przez rozrzut liczby padających elektronów wynikający z rozkładu Poissona. Wartość DQE może być estymowana na podstawie informacji o szerokości piku dla pojedynczego elektronu z Rys. 5.32 i Rys. 5.33. Zakładając akwizycję składającą się ze 100 ramek oraz że każdy elektron generuje sygnał w detektorze, estymowane wartości DQE wynoszą odpowiednio 0,93, 0,72 i 0,84 dla monoenergetycznych wiązek elektronów o energiach 40 keV, 100 keV i 400 keV.
5.5.6.4. Analiza rozdziełości przestrzennej – MTF

Analizę rozdzielczości wykonano dla obydwu wersji układu MIMOSA V dla energii wiązki z zakresu od 40 keV do 400 keV. Kryterium do oceny rozdzielczości detektora była MTF wyliczona na podstawie danych eksperymentalnych. Powszechnie stosowaną metodą obliczania MTF jest wyliczenie transformaty Fouriera, funkcji będącej odpowiedzią systemu na wymuszenie o nieskończonej długości i zerowej szerokości (ang. knife function). Odpowiedź systemu na takie wymuszenie nazywana jest LSF (ang. Line Spread Function). W praktyce LSF jest typowo otrzymywana w wyniku projekcji obrazu liniowej przesłony o minimalnej rozkwarcie płaszczyznę detektora [67]. Ze względów praktycznych, dla pracy ze źródłem elektronów, łatwiejszym zadaniem jest jednak rejestracja obrazu skoku pomiędzy częścią wyeksponowaną na promieniowanie i osłoniętą przed promieniowaniem niż obrazu liniowej przesłony. Wobec tego faktu MTF była policzona na podstawie analizy skokowego przejścia na obrazie pomiędzy częścią wyeksponowaną na wąską elektronów a częścią osłoniętą przez płytkę aluminiowę o grubości 1,5 mm lub przysłoniętą przez drut żelazny¹⁸ o podobnej średnicy jak grubość płytki [68]. Użyta grubość płytki była wystarczająca dla zatrzymania elektronów o energiach w zakresie użyczego do eksperymentu. Przykład typowego obrazu używanego do oszacowania rozdzielczości jest pokazany na Rys. 5.34a. Pierwszym krokiem w szacowaniu MTF było dopasowanie prostej do granicy pomiędzy jasnym i ciemnym obszarem obrazu. Następnie uzyskiwano LSF ze zróżnicowaniem obrazu skoku. W tym celu przeprowadzono kilka kolejnych operacji. W pierwszym kroku dokonywano rzutowania wzdłuż krawędzi pomiędzy częścią jasną i ciemną, korzystając z wcześniej otrzymanego dopasowania prostej. Ta operacja dawała jednowymiarowy przebieg odpowiedzi detektora na skokową zmianę intensywności w obrazie dwuwymiarowym. W celu zwiększenia dokładności dalszych obliczeń zwiększano rozdzielczość obrazu w kierunku pionowym, dzieląc każdy piksel na 51 elementów, z których każdy posiadał rozmiary (0,3×17) μm². Następnie piksele w kolumnach przesuwano o wektor wynikający z dopasowania prostej. Po przesunięciu, wszystkie amplitudy sygnałów sumowano w rzędach i obliczano wartość średnią. Wyniki po obliczeniu wartości średniej poddawano normalizacji. Całkowity efekt był równoważny równoległąm rzutowaniu na jeden brzeg obrazu wszystkich pikseli wzdłuż prostej, będącej dopasowaniem liniowym do krawędzi. Ilustracja operacji przeprowadzonych w celu otrzymania jednowymiarowego obrazu krawędzi jest pokazana na Rys. 5.34. Dane na Rys. 5.34 zostały zarejestrowane dla wersji FS układu MIMOSA V z przesłoną aluminiową dla energii wiązki wynoszącej 100 keV.

Operacja podziału brzegu, na który dokonano rzutowania, na odcinki o długości 0,3 μm jest programowym podzialem na przedziały (ang. binning). Wielokrotne wejście do tego samego „koszyka” były usредniane. Pierwsza analiza otrzymywanych funkcji jednowymiarowych po rzutowaniu wykazała istnienie lokalnych niemonotoniczności, które prowadziły do problemów w dalszej analizie numerycznej. Zrezygnowano z zastosowania jakiegos algorytmu wyglądającego, obawiając się zafalszowania zbocza przejścia pomiędzy ciemną i jasną częścią obrazu. W zamian zdecydowano się na wykonanie dopasowania przebiegu do odpowiedniej kombinacji funkcji analitycznych i przeprowadzenie reszty obliczeń MTF analitycznie. Takie podejście znane jest jako wyliczenie MTF przed próbkościem (ang. pre–sampling MTF). Podejście polegające na wykorzystaniu dopaso-

¹⁸ Jako materiał na przesłonę preferowane było użycie aluminium ze względu na ograniczenie emisji fotonów promieniowania X.
wania za pomocą wyrażeń analitycznych jest opisane w literaturze i polegane jest do wyliczania MTF ze mierzonych LSF z dużą zawartością szumu [69]. Znacznie zwiększona liczba punktów w obrazie jednowymiarowym w stosunku do pierwotnego rozmiaru matrycy pozwala na stabilne i dokładne dopasowywanie układu dwóch krzywych sigmoidalnych typu erf(x) do otrzymywanego obrazu krawędzi.

Rys. 5.34 Ilustracja operacji przeprowadzonych do otrzymania jednowymiarowego obrazu krawędzi, przesunięcie o wektor wynikający z dopasowania prostej po zwiększeniu rozdzielczości w kierunku pionowym w wyniku podziału każdego piksela na 51 (0,3×17 μm²) elementów a), sumowanie, uśrednienie i normalizacja b) (dane otrzymane dla wersji FS układu MIMOSA V z przesłoną aluminiową dla energii wiązki 100 keV).

Postać wyrażenia użytego w procesie dopasowania jest podana następującym wzorem

\[step(x) = y_0 - \frac{g_1}{2} \text{erf}\left(\frac{a-x}{s_1\sqrt{2}}\right) - \frac{g_2}{2} \text{erf}\left(\frac{a-x}{s_2\sqrt{2}}\right) \]

gdzie:

\[y_0, g_1, g_2, s_1, s_2, a \] – parametry dopasowania,

\[\text{erf}(x) \] – funkcja błędu.

Charakter funkcji, użytych w wyrażeniu (5.12), wymagał zastosowania dopasowania nieliniowego z koniecznym ograniczeniem dozwolonych zmian parametrów wolnych dopaso-

19 Prezentowane podejście jest poprawne przy założeniu, że źródła szumu rozmawiające krawędzie, do których można zaliczyć podział ładunku pomiędzy pikselami w czasie zbierania ładunku, wielokrotne rozpraszanie i rozpraszanie wsteczne padających elektronów, są źródłami szumów dającymi niezależne przyczynki do rozmycia i że można je traktować jako źródła gaussowskie. Dopasowanie za pomocą dwóch sigmoid zostało wybrane jako najlepsze pośród testowanych kilku kombinacji przebiegów analitycznych.
wania do wstępnie założonych przedziałów. Przed dopasowaniem punkty poddawano nor-
malizacji, tak aby ich wartości leżały pomiędzy poziomami 0 i 1. Przykłady znormalizo-
wanych krzywych pokazujących granice pomiędzy częściami obrazu wyekspolonaną na
wijkę elektronów i przysłoniętą płytą aluminiową, otrzymanych według omawianej
metody, są pokazane na Rys. 5.35 i Rys. 5.36 odpowiednio dla wersji BS i FS układu MI-
MOSA V. Przeparte widoczne na Rys. 5.35 otrzymane są dla 40 keV i 400 keV, a na Rys.
5.36 dla 100 keV i 400 keV. Analizując krzywe z Rys. 5.35, można zauważyć, że dla ener-
gii 40 keV przejście pomiędzy poziomem minimalnym i maksymalnym przebiega po jed-
nym nachyleniu i rozmycie krawędzi ma miejsce jedynie w bezpośrednim sąsiedztwie linii
rozgraniczającej obszar przysłonięty od wyekspolonanego. W przypadku energii 400 keV
widać wyraźnie występowanie dwóch nachyleń. Amplitudy sygnałów w obszarach obrazu
odległych nawet o kilkanaście pikseli od linii rozgraniczającej wykazują występowanie
stopniowych zmian. Zmiany te stanowią w rezultacie dodatkowe rozmycie krawędzi.

Rys. 5.35 Znormalizowana krzywa pokazująca krawędź pomiędzy jasną i ciemną częścią obrazu dla
energii wiązki 40 keV a) i 400 keV b) zmierzoną na wersji BS układu MIMOSA V.

Podobną sytuację można zaobserwować w wypadku danych przedstawionych na Rys.
5.36 dla wersji FS układu MIMOSA V.

Rys. 5.36 Znormalizowana krzywa pokazująca krawędź pomiędzy jasną i ciemną częścią obrazu dla
energii wiązki 100 keV a) i 400 keV b) zmierzoną na wersji FS układu MIMOSA V (krzywa ciągła
odpowiada zarysowi krawędzi dla części detektora nad otworem w płycie obwodów drukowanych,
natomiast krzywa przerywana odpowiada tej części detektora, która była nad pełną częścią płytki).

Za występowanie tego dodatkowego efektu, który nie był obserwowany dla niskiej ener-
gii elektronów, odpowiedzialne jest rozpraszanie wsteczne elektronów. Elektrony odbite od
głębnych obszarów detektora mogą powracać do warstwy aktywnej detektora i sygnał
pochodzący od tych elektronów może być ponownie zarejestrowany, z tą różnicą, że może
się on pojawiać w ogólnym przypadku daleko od miejsca pierwszego wejścia elektronu w ośrodek detektora.

W tym przypadku analizowany obraz został podzielony na dwie części, tzn. osobno dokonano analizy krawędzi dla części znajdującej się nad otworem w płytcę obwodów drukowanych i osobno dla części znajdującej się nad pełnym fragmentem płytki obwodów drukowanych. Na Rys. 5.36 podział ten znajduje odzwierciedlenie w postaci dwóch krzywych: pierwsza, zaznaczona linią ciągłą, jest dla części krawędzi nad otworem oraz druga, zaznaczona linią przerywaną, jest dla części nad pełną płytką. Jak wygląda umiejscowienie otworu w płytcę obwodów drukowanych pod detektorem, jest pokazane na Rys. 5.37. Interesujące jest to, że również ten obraz został uzyskany przez detektor MIMOSA V przez jego podświetlenie od spodu przy użyciu światła widzialnego. Otwór w płytcie jest widoczny jako część koła ciemniejsza od pozostałej części obrazu. Dla elektronów o energii 100 keV, całkowicie zatrzymywanych w detektorze, dla których osiągnięte płytki obwodów drukowanych jest poza ich zasięgiem, krzywa przerywana i ciągła pokrywają się. Natomiast dla energii 400 keV krzywa ciągła i przerywana dość znacznie się rozbudzą. Rozmycie jest silniejsze dla części krawędzi znajdującej się nad pełnym obszarem płytki obwodów drukowanych. Spowodowane jest to faktem, iż przy grubości całkowitej detektorowej wynoszącej 120 μm elektrony przechodząc przez detektor, dochodząc do płytki obwodów drukowanych, składają się odbijane wstecznie i mogą wracać do warstwy aktywnej detektora. W przypadku części krawędzi znajdującej się nad otworem w rozmyciu krawędzi uczestniczą jedynie elektrony odbite wstecznie w samym detektorze.

![Rys. 5.37 Obraz uzyskany przez podświetlenie detektora MIMOSA V od spodu przy użyciu światła widzialnego pokazujący umiejscowienie otworu w płytcę obwodów drukowanych.](image)

Przykład obrazu użytego do analizy rozdzielczości uzyskanego z wersją FS układu MIMOSA V jest pokazany na Rys. 5.38. Obraz jest wynikiem akumulacji 100 oddzielnych ramek i został uzyskany dla energii wiązki wynoszącej 350 keV. Wiązka była rozproszona, pokrywając pole powierzchni znacznie większe niż rozmiar detektora. Jej natężenie było jednorodne. Grubość detektorowej wynoszącej 120 μm stanowi jedynie 20% maksymalnego zakresu detektorów przy energiach 350 keV w krzemu. Dowodniejsza obserwacja obrazu pozwala zauważyć kształt o okrągłym zarysie, wyróżniający się nieznacznie mniejszą amplitudą sygnału. Kształt ten odpowiada dokładnie położeniowi i wielkości otworu w płytcę obwodów drukowanych, na której jest umocowany detektor. Rozróżnienie pomiędzy jaśniejszą i ciemniejszą częścią obrazu odpowiada różnej statystyce przypadków rejestracji
pojedynczych elektronów w tych częściach. Efekt rozpraszania wstecznego, oprócz wprowadzonego wcześniej wpływu pogarszającego rozdzielczość, powoduje również zmianę odczytu amplitudy sygnału i może powodować powstawanie dodatkowego szumu w obrazie mikroskopowym. Niniejsze obserwacje pozwalają na wyciągnięcie ważnego wniosku na temat użycia detektorów do bezpośredniej detekcji elektronów w mikroskopie elektronowym. Mianowicie, w celu osiągnięcia wysokiej rozdzielczości i niezakłóconego odczytu amplitudy detektor musi być odpowiednio cienki dla zredukcji efektu rozpraszania wstecznego elektronów. Rozpraszanie wsteczne jest jednoznacznie odpowiedzialne za pogorszenie rozdzielczości i wprowadzanie dodatkowego szumu w obrazie.

Rys. 5.38 Obraz akumulujący 100 zebranych ramek otrzymany dla energii wiązki wynoszącej 350 keV.

Po otrzymaniu analitycznych dopasowań do przebiegów krawędzi pomiędzy obszarami, kolejnym krokiem było wyliczenie transformat Fouriera. Otrzymane w wyniku dopasowania wyrażenie analityczne różniczkowano i wyliczono transformatę Fouriera. Wyliczona transformata Fouriera jest poszukiwaną MTF. Analityczna postać jest dana na podstawie równania (5.11) następującym wzorem:

\[
\text{MTF } (f) = \text{erf} \left(\left(g_1 e^{-2\pi f_1^2} + \frac{g_2 e^{-2\pi f_2^2}}{s_2 \alpha} \right) \right)
\]

gdzie:

\[
\begin{align*}
g_1, g_2, s_1, s_2, \alpha & \quad \text{parametry dopasowania,} \\
\text{erf}(x) & \quad \text{funkcja blędu.}
\end{align*}
\]

Wyniki obliczeń MTF są pokazane na **Rys. 5.39** dla wersji FS i BS układu MIMOSA V dla różnych energii wiązki elektronów. W przypadku wyników dla wersji FS dokonano rozróżnienia pomiędzy MTF policzoną dla części brzegu znajdującej się nad otworem w płytcie obwodów drukowanych i nad częścią pełną płytki. Odpowiednio na **Rys. 5.39a**, **Rys. 5.39b**, **Rys. 5.39c**.
przebiegu MTF dla części detektora nad częścią pełną płytki obwodów drukowanych zaznaczone są krzywymi ciągłymi, a nad częścią z otworem w płytcę obwodów drukowanych krzywymi przerywanymi dla każdej z rozważanych energii, tj. 100 keV, 350 keV i 400 keV. Porównując odpowiednie pary przebiegów, można zauważyć, że MTF policzona dla części detektora znajdującej się nad pełnym fragmentem płytki opada znacznie szybciej. Pogorszenie się rozdzielczości ma miejsce już dla bardzo niskich częstotliwości przestrzennych w obrazie. Wyjątkiem są krzywe dla energii 100 keV, które w dominującym zakresie się pokrywają. Wynika to z tego, że elektrony o tej energii są całkowicie zatrzymanywane w detektorze i nie są odbijane wstecznie od płytki obwodów drukowanych. Zatem dla energii wiązki wynoszącej 100 keV nie ma znaczenia miejsce wyznaczenia MTF. Wersja FS układu MIMOSA V nie była testowana dla energii wiązki poniżej 100 keV.

Dla wersji BS układu MIMOSA V testy wykonano dla energii wiązki wynoszących 40 keV, 60 keV, 80 keV, 100 keV, 120 keV i 400 keV. Wyniki przedstawione są na Rys. 5.39b. Analizując dokładniej wyniki dla wersji BS, można zauważyć, że dla niskich energii, tj. kiedy energia padających elektronów jest konwertowana z najmniejszymi stratami na pary e–h+, rozdzielczość detektoru poprawia się. Najlepsza rozdzielczość jest osiągana dla energii 40 keV i 60 keV, po czym wraz ze wzrostem energii do 120 keV rozdzielczość powoli się pogarsza. Dla najwyższej z użytych energii można zaobserwować największe pogorszenie MTF w zakresie niskich rozdzielczości przestrzennych i znaczącą poprawę w zakresie większych rozdzielczości przestrzennych. Podobny wniosek wypływa z analizy przebiegów dla wersji FS układu MIMOSA V.

Dwie wartości energii, mianowicie 100 keV i 400 keV są wspólne dla szacunków MTF dla wersji FS i BS układu MIMOSA V. Porównanie MTF dla obydwóch tych wersji układu dla tych wartości energii pokazuje, że rozdzielczość jest nieznacznie lepsza dla wersji oświetlonej od spodu. Fakt ten można prosto wytłumaczyć, przywołując spostrzeżenie, że padające elektrony muszą przejść przez warstwę pasywacji, złożoną z SiO₂, warstwę metalu używanego do połączeń w układzie scalonym i warstwę pasywacji Si₃N₄, zanim dotrą do objętości aktywnej w przypadku wersji FS. Grubość tej warstwy pasywnej wynosi typowo pomiędzy 10 μm a 20 μm dla standardowego procesu CMOS. Ponadto, całkowita grubość warstwy aktywnej jest większa w przypadku wersji FS. W procesie ścieńiania, w wyniku którego otrzymano wersję BS układu MIMOSA V, warstwa epitaksjonalna została częściowo skonsumowana. Elektrony przechodząc przez warstwę niaktywną, stającą w wersji FS, oraz grubszą warstwę aktywną w tej wersji układu MIMOSA V ulegają rozpraszaniu, co skutkuje pomiarem pogorszonej rozdzielczości przestrzennej w stosunku do wersji MIMOSA V. W wyniku tego, rozdzielczość oświetlonej od spodu wynosi znacznie mniejszą niż dla wersji BS, co jest wynikiem dodatkowych strat aktywnych na obrzeżach MTF układa MIMOSA V.

Całkowita grubość wersji BS układu MIMOSA V była znacznie większa niż maksymalny zasięg elektronów nawet przy najwyższej energii 400 keV używanej do testów. Wynikało to z przeklejenia wałka zapewniającego stabilność mechaniczną, co jest opisane w rozdziale 5.1. W przypadku tej wersji układu MIMOSA V jedynie rozpraszanie w krzemię odgrywało rolę czynnika wpływającego na MTF i nie zauważane różnic w wynikach pomiarów MTF dla części układu leżących nad różnymi fragmentami płytki drukowanej.

Z przeprowadzonych pomiarów MTF można wywieść ogólny wniosek, że MTF ulega pogorszeniu, szczególnie w zakresie niskich częstotliwości przestrzennych, w wyniku rozpraszania wstecznego elektronów. Efekt pogorszenia rozdzielczości jest widoczne, jeżeli całkowita grubość detektor jest znacznie większa od grubości warstwy aktywnej dla detekcji. Również nie bez znaczenia dla rozdzielczości przestrzennej jest grubość samej war-
stwy aktywnej. Dla danej energii wiązki elektronów istnieje taka grubość warstwy aktywnej, która powinna dawać silny sygnał, jednocześnie nie wyprowadzając znaczącego rozpraszania elektronów.

Wyliczona na podstawie rozmiarów pikseli częstotliwość Nyquista dla układu MIMOSA V wynosi 29,4 linii/mm. Korzystając z wyników zaprezentowanych na Rys. 5.39, można zauważyć, że MTF przy częstotliwości Nyquista spada do 0. Wynik taki jest rezultatem nałożenia się kilku efektów. Jednym z nich jest rozpraszanie elektronów. Jednakże czynnikiem dominującym w pogorszeniu MTF jest rozpłyn generowanego ładunku pomiędzy sąsiednie piksele. Średnia rozdzielczość, zakładając MTF na poziomie 0,1, jest w zakresie częstotliwości przestrzennych pomiędzy 15 linii/mm a 20 linii/mm dla obydwu wersji układu MIMOSA V. Jest to jednak wynik lepszy od np. uzyskiwanych z elementami CCD o podobnych rozmiarach pikseli.

MTF wyliczana przy zastosowaniu metody krawędzi jest często obarczona błędem wynikającym z rozpraszania padających elektronów oraz generacji elektronów wtórnnych na krawędziach metalowej przesłony [48]. Rzeczywista MTF jest nieznacznie lepsza. Projekt układu MIMOSA V zawiera tylko jedną diodę zbierającą ładunek w każdym pikselu. Znaczne ograniczenie rozpływłu ładunku pomiędzy piksele sąsiednie można uzyskać stosując kilka diod połączonych równolegle w każdym pikselu, rozmieszczonych np. w pobliżu

Rys. 5.39 MTF dla wersji FS policzona dla części brzegu nad otworem w płycie obwodów drukowanych i nad częścią pełną płytki a) i BS b) układu MIMOSA V dla różnych energii wiązki [54].

MTF wyliczana przy zastosowaniu metody krawędzi jest często obarczona błędem wynikającym z rozpraszania padających elektronów oraz generacji elektronów wtórnnych na krawędziach metalowej przesłony [48]. Rzeczywista MTF jest nieznacznie lepsza. Projekt układu MIMOSA V zawiera tylko jedną diodę zbierającą ładunek w każdym pikselu. Znaczne ograniczenie rozpływłu ładunku pomiędzy piksele sąsiednie można uzyskać stosując kilka diod połączonych równolegle w każdym pikselu, rozmieszczonych np. w pobliżu
narożników [15], co spowodowało poprawę MTF. Jednak prawdziwie skutecznym rozwiązywaniem minimalistycznym rozpływ ładunku pomiędzy sąsiednimi pikselami jest użycie detektora, w którym możnaby indukować pole elektryczne w warstwie aktywnej detektora, które to pole przyspieszałoby zbieranie ładunku i ograniczało jego rozpływ.

5.5.7. **Zniszczenia radiacyjne i kwestia odporności detektora**

Zniszczenia radiacyjne zdecydowanie stanowią wyzwanie dla detektorów używanych do bezpośredniego obrazowania z wykorzystaniem elektronów w mikroskopie elektronowym. Występowanie zniszczeń radiacyjnych jest ewidentnym powodem wykluczenia elementów CCD z użycia do bezpośredniej detekcji elektronów. W przypadku detektorów MAPS konwersja zebranego ładunku na sygnał napięciowy następuje najbliżej jak jest to możliwe od źródła sygnału, tj. w każdym pikselu. Ze względu na niskie energie elektronów, które są poniżej progu, dla którego mogą występować zniszczenia strukturalne, tj. pojedyncze defekty sieci krystalicznej lub defekty o strukturze klastrów [71][72], głównymi problemami są gromadzenie ładunków w warstwach dielektryka oraz zniszczenia obszarów granicznych pomiędzy obszarami dielektryka i krzemu, skutkujące przyrostem gęstości stanów powierzchniowych. Obydwa te efekty prowadzą do wzrostu prądów upływu, które to w ostatecznym rozrachunku mogą uniemożliwić używanie detektora ze względu na wzrost szumu i nasycanie się poziomu napięcia wyjściowego z piksela niepozostawiające wystarczającego zapasu dla sygnału użycznego. W dużej mierze ze wzrostem prądów upływu można walczyć, wykorzystując ulepszone struktury diod zbierających ładunek, tj. takie, w których złącze jest odseparowane od przypowierzchniowych źródeł generacji prądów upływu, np. poprzez odpowiednio spolaryzowane pierścienie ochronne i takich, w których eliminuje się wszelkie obszary grubego tlenku, np. izolacje w postaci STI (ang. *Shallow Trench Isolation*). Przykłady sposobów uzyskiwania takich struktur są nakreślone w rozdziale 7. Drugim elementem koniecznym do zapewnienia odporności na promieniowanie detektora jako całości jest przestrzeganie zasad opracowanych dla układów scalonych używanych w fizycznym czasie energii dla poprawy ich odporności na kumulację dawek promieniowania jonizującego [73][74] lub projektowanie układów do produkcji w tzw. bardzo gęstych technologii (ang. *Very Deep Sub–Micron* – VDSM). Zostało wykazane, że te technologie VDSM charakteryzują się naturalną znacznie podwyższoną odpornością na promieniowanie w porównaniu ze starszymi technologiami z grubszym tlenkiem bramkowym [75][76][77]. Procesy scalone oferujące tranzystory z długością bramki poniżej 0,13 μm są obecnie szeroko dostępne, aczkolwiek koszty produkcji układu scalonego przy użyciu tych technologii są jeszcze wysokie. Na dodatek, również ze względu na minimalizację kosztów układów sensorów obrazu, budowanych przez konsorcjum komercyjnym do kamer lub aparatów cyfrowych, pewne ulepszenia, takie jak odpowiednia grubość warstwy epitaksjonalnej lub dodatkowe implantacje polepszające jakość diod zbierających ładunku, nie są dostępne w procesach wiodących w agresywnym skalowaniu.

Układ MIMOSA V nie był zaprojektowany z myślą o osiągnięciu możliwie najwyższej odporności na promieniowanie. Zatem badania odporności detektora na zniszczenia radiacyjne nie były głównym celem, dlatego też nie były przeprowadzone w ścisłym ilościowym sposób w niniejszej pracy. Ze względu na fakt, iż ewentualnie osiągnięte wyniki jakościowe odporności na promieniowanie nie byłyby reprezentatywne dla detektorów MAPS, ograniczono się głównie do obserwacji stopnia zniszczeń w czasie wykonywania testów opisanych wcześniej. Zaobserwowano, że używanie układu MIMOSA V w ciągu całego
dnia zbierania danych powodowało powolny, ciągły przyrost prądu upływu diod zbierających ładunki. Zwiększający się prąd upływu był widziany jako powiększający się sygnał ciemny detektora, będący poziomem odczytywanym przy braku wymuszenia w postaci padających elektronów. Proste oszacowanie skutków zniszczeń radiacyjnych wywołanych w detektorze przez padające elektrony zostało przeprowadzone przy wyliczeniu scałkowanego strumienia elektronów i wynikający z niego wzrost wartości p iędestał w akwizycji obrazu transmisyjnego pokazanego na Rys. 5.29b. Średni scałkowany strumień elektronów przypadający na piksel we obszarze ograniczonym przez owalny profil wynosi około 25×10^3 elektronów na jeden piksel. Liczba ta uwzględnia strumień przypadający na czas strojenia obrazu, znalezienia optymalnych nastaw mikroskopu i kilku akwizycji poprzedzających uzyskanie obrazu pokazanego na Rys. 5.29b. Pomiary p iędestał, przy wyłączonej wiązce elektronów, przed ekspozycją i po niej pokazały, że p iędestały przyrosły średnio o około 1,8 ADCU dla pikseli ze środka owalnego wzoru. Dla pozostałych pikseli p iędestały pozostały na poziomie wyjściowym. Wzrost p iędestał wynikał bezpośrednio ze wzrostu prądu upływu. Przyrost o 1,8 ADCU jest równoważny około 1% najbardziej prawdopodobnego sygnału dla elektronów o energii 400 keV. Wzrost p iędestał w średnim zakresie też nie powodował istotnego zmniejszenia zakresu użytecznych napięć na wyjściu detektora. Mimo pogorszonych parametrów w wyniku akumulacji dawki promieniowania jonizującego, detektor MIMOSA V był zdolny do rejestrowania obrazów w mikroskopie elektronowym. W stosunku do osiągalnych wyników z elementami CCD zakres wytrzymałości testowanego układu detektora był znacznie większy. Analizy przeprowadzone dla optymalizowanych struktur detektorów MAPS pokazały, że ten typ detektorów może wytrzymać dawki promieniowania jonizującego przekraczające 1 Mrad [78][79], co jest wartością kilka rzędów wielkości większą niż maksymalne dawki dopuszczalne dla elementów CCD.

Podsumowując, można stwierdzić, że osiągnięte wyniki bezpośredniego obrazowania z wykorzystaniem elektronów na potrzeby mikroskopii elektronowej wraz z dokładnymi pomiarami rozdzielczości, obserwacjami dotyczącymi zniszczeń radiacyjnych oraz znajomością projekcji odporności na te zniszczenia struktur optymalizowanych pozwoliły na potwierdzenie przydatności detektorów MAPS w postulowanym zakresie.
6. **Uzupełniające testy układu MIMOSA V wykonane przy użyciu wiązki synchrotronowego promieniowania X**

W pomiarach i badaniach próbek przy użyciu promieniowania synchrotronowego możliwe jest zjednoczenie pod względem dokładności do skali subnanometrowej. Jest to możliwe, dlatego że długości fali promieniowania odpowiadają rozmiarom próbki i fragmentów, których struktura jest badana. Procesy charakteryzujące się dużą dynamicznością i zachodzące w niezmiennym czasie mogą być wydajnie badane dzięki wysokiej intensywności wiązki promieniowania. Do takich badanych procesów należą np. zmiany fazowe, zachodzące w próbkach pod wpływem wymuszeń zewnętrznych, takich jak temperatura czy wzbudzenie za pomocą lasera lub destrukcja próbki pod wpływem dostarczonej energii. W przypadku badania procesów dynamicznych wysoka intensywność wiązki zapewnia wystarczającą liczbę fotonów przypadającą na krótki przedział czasowy utrzymywania się.

20 Źródła promieniowania synchrotronowego należą do bardzo ważnych narzędzi we współczesnej nauce, będąc nowoczesnymi mikroskopami w rękach naukowców z wielu dziedzin. Powstawanie nowych ośrodków, posiadających pierścień synchrotronów, wyzwala stowarzyszony z tym trendem rozwój detektorów.
6.1. Motywacja do przeprowadzenia eksperymentu z detektorem MIMOSA V

Jednym z rozważanych pomysłów jest użycie detektorów MAPS do detekcji niskoenergetycznego promieniowania X w zakresie od kilku keV do około 10 keV. Z powodu niewielkiej grubości warstwy aktywnej detektorów MAPS, którą, jak już wspomniano, jest warstwa epitaksjalna o grubości nieprzekraczającej kilkunastu mikrometrów, wydajność detekcji klasycznych detektorów MAPS spada bardzo gwałtownie dla promieniowania o energii nawet poniżej 10 keV. Testowany przez mnie detektor MIMOSA V nie był zop- tymalizowany do wydajnej detekcji promieniowania X. Poddanie go testom miało za cel wykazanie podstawowej przydatności urządzeń MAPS w tym zastosowaniu. W przyszłości jedną z możliwych ścieżek optymalizacji detektorów MAPS jest ich wytwarzanie przy użyciu procesów z grubszą warstwą epitaksjalną, np. odwolając się do dedykowanych technologii, które mogą używać wafli z grubszą warstwą epitaksjalną. Zależą technologii detektorów MAPS jest elastyczność form odczytu i duże możliwości zintegrowania funkcji przetwarzania sygnałów w wytwarzanych układach. Oferują one wysoką rozdzielczość przestrzenną, mogą, jeśli zachodzi taka potrzeba, być ściśnione w celu umożliwienia eks- pozycji od spodu detektora dla zwiększenia wydajności detekcji dla niskich energii promieniowania X, promieniowania UV lub dla światła widzialnego.

Pierwsza charakterystyka detektorów MAPS została wykonana dla detektora MIMOSA V na wiązce X12A w National Synchrotron Light Source (NSLS) w Brookhaven National Laboratory w USA [82]. Urządzeniem, które poddano testowaniu, była wersja BS układu MIMOSA V, która była omówiona szerzej w rozdziale 5. Testy były wykonane w temperaturze pokojojowej dla energii wiązki w zakresie od 5 keV do 12 keV. W tym rozdziale pokazane są przykłady osiągniętych wyników obrazowania z wykorzystaniem promieniowania X przy użyciu detektorów MAPS.
6.2. Instalacja detektora MIMOSA V na wiązce

Płytką obwodów drukowanych z zamontowanym detektorem MIMOSA V była umocowana w pudełku aluminiowym chroniącym przed dostępem światła. Otwór w pudełku na wprost detektora był przykryty cienką folią z mylaru. Detektor w pudełku był zainstalowany na stole X–Y umożliwiającym programowane przesunięcia w kierunkach pionowym i poziomym prostopadłych do wiązki promieniowania X. Plamka wiązki była zbyt mała, aby mogła pokryć całą powierzchnię detektora. Typowo wiązka promieniowania synchrotronowego ma przekrój prostokątny. Dokładnie przekrój wiązki miał formę prostokąta o wymiarach około (0,3×9) mm². Dłuższy bok prostokąta był ułożony poziomo. W takiej sytuacji konieczne było wykonanie skanowania przez wiązkę powierzchni detektora bez krokowych, powodujących przesuwanie stołu z detektorem w czasie, kiedy wiązka była włączona, nie przerywając akwizycji danych. Silniki krokwowe były zaprogramowane na kolejne przesunięcia stołu o stałą wartość i zatrzymanie w każdej pozycji w celu umożliwienia akwizycji pewnej liczby ramek dla uzyskania odpowiedniego poziomu ekspozycji, nie powodując jednak nasycania się pikseli w pojedynczych ramkach obrazu. Obrazowana próbka była przymocowana na wierzchnej stronie pudełka aluminiowego przed oknem z mylaru i przy takim ułożeniu była przesuwana razem ze stołem, nie zmieniając swojej pozycji względem detektora. Konieczne obrazy, prezentowane w niniejszej pracy, były uzyskane w wyniku przetwarzania zgromadzonych danych przy użyciu napisanego oprogramowania. Główna część pracy programu sprowadzała się do sumowania ramek branych oddzielnie w czasie skanowania. W programie zakodowano specjalny algorytm pozwalający na wyciągnięcie z każdej ramki jedynie poziomych pasków o stałej wysokości, które były naświetlone przez wiązkę w danej pozycji. W ten sposób uniknięto sumowania szumu z ciemnych, nienawietlonych części obrazów z każdego kroku. Ponieważ naświetlone paski z każdego przesuwu stołu lekko się nakładały, przejście pomiędzy krokami było poddawane rozmyciu poprzez uśrednienie amplitud z nakładających się fragmentów pasków. Naświetlenie wiązki było dobrane w taki sposób, aby uniknąć nasycenia się pikseli. Do obniżenia natężenia używano odpowiedniej liczby listków cienkiej folii aluminiowej umieszczonych na drodze wiązki przed detektorem. Testy były wykonane na wiązce X12A. Widok instalacji wiązki X12A bezpośrednio tuż przed wejściem do pomieszczenia do przeprowadzania eksperymentów oraz widok umocowania detektora, znajdującego się w puszce aluminiowej na stole umożliwiającym pozyционowanie detektora w kierunku poziomym i pionowym, są pokazane na Rys. 6.1. Na Rys. 6.1a widać rurę próżniową otoczoną przez instrumentację przed wejściem do pomieszczenia testowego, natomiast na Rys. 6.1b widać zamocowaną przed puszką z detektorem próbkę kości, która jest przykładem jednego z obrazowanych obiektów. Próbka kości jest szczegółowo opisana w rozdziale 6.3.1.

6.3. Testy obrazowania przy użyciu promieniowania X

Testy obrazowania obiektów przy użyciu promieniowania X ze źródła promieniowania synchrotronowego wykonano, używając detektora MIMOSA V do bezpośredniej detekcji padających fotonów. Uzyskane obrazy były transmisyjnymi obrazami radiograficznymi. Wykonane testy miały charakter czysto rozpoznawczy w celu oceny możliwości zastosowanych detektorów do pomiarów zrealizowanych w rozdziale 6.2.
wania detektorów MAPS w przyszłych eksperymentach. Testy nie wchodziły jeszcze w program żadnego konkretnego eksperymentu z użyciem promieniowania synchrotronowego w chwili obecnej. Do uzyskania obrazów wykorzystano dostępne próbki.

Rys. 6.1 Widok instalacji wiązki X12A w NSLS bezpośrednio tuż przed wejściem do pomieszczenia do przeprowadzania eksperymentów a), widok umocowania detektora znajdującego się w puszcze aluminiowej na stole umożliwiającym pozycjonowanie detektora w kierunku poziomym i pionowym (przed detektorem zamocowana jest próba) b).

6.3.1. Obrazowanie fragmentu kości z implantem

Pierwszą próbką użytą do testów obrazowania był fragment kości zawierający mały tytanowy implant w postaci drutu. Próbka kości miała formę prostopadłościanu o wymiarach podstawy około (5×5) mm². Średnica tytanowego drutu implantu wynosiła około 0,4 mm. Tytanowy drut był zainstalowany w kości w taki sposób, że pozostawała niewielka, wynosząca kilkanaście mikrometrów przerwa pomiędzy substancją kości a drutem. Rozwój technik obrazowania takich specyficznych elementów biologicznych jest przedmiotem intensywnych badań w dziedzinie wykorzystania promieniowania synchrotronowego [83]. Takie puste przerwy na granicy pomiędzy kośćią a metalowym implantem mogą powstawać wskutek odsunięcia się substancji kości od implantu. W rezultacie powstanie przerwy może powodować niepowodzenie przyjęcia się implantu. Zdolność rejestracji takich przerw jest ważna dla diagnozy medycznej. Wygląd próbki poddanej obrazowaniu jest pokazany na Rys. 6.2.

Rys. 6.2 Widok prostopadłościennnej próbki kości zawierającej mały tytanowy implant w postaci fragmentu drutu; średnica implantu wynosi około 0,4 mm, pomiędzy substancją kości a implantem istnieje niewielka przerwa.

Do uzyskania radiograficznego obrazu próbki używano promieniowania X o energii 8,2 keV. Pierwszy radiogram, pokazany na Rys. 6.3, został uzyskany dla takiego ułożenia próbki, w którym dwie ściany prostopadłościanu były równoległe do płaszczyzny detekto-
Obraz radiograficzny odzwierciedla jednorodną gęstość substancji kości, ciemny kształt odpowiadający drutowi z tytanu oraz jaśniejszą otoczkę odpowiadającą przerwie pomiędzy drutem a kością. Drugi radiogram, pokazany na **Rys. 6.4**, został uzyskany dla takiego ułożenia próbki, w którym ściany prostopadłościanu były nachylone pod kątem około 45° do płaszczyzny detektora. Widoczny na obrazie gradient intensywności odpowiada zwiększającej się grubości obrazowanej substancji kości w kierunku środka próbki, oddając proporcjonalność odpowiedzi detektora do intensywności padającego promieniowania.

Rys. 6.3 Obraz prostopadłościennej próbki kości z tytanowym implantem w przypadku, kiedy ściany próbki są ułożone równolegle do płaszczyzny detektora; obraz otrzymany przy energii wiązki wynoszącej 8,2 keV [82].

Obydwa obrazy radiograficzne zostały uzyskane przy przesuwaniu stołu z detektorem w 55 zaprogramowanych krokach. W każdym kroku rejestrowano 12 pojedynczych ramek, które były następnie sumowane według procedury omówionej wcześniej (por. konstrukcja obrazu z danych zebranych w testach przy użyciu mikroskopu elektronowego).
Szacowana liczba fotonów przypadająca na najjaśniejsze fragmenty obrazu po zsumowania wynosiła około 200 fotonów/piksel. Próbka kości z tytanowym implantem została wykorzystana do obrazowania, ponieważ mogła ona być używana przez inną grupę badawczą w czasie wykonywanych testów z MIMOSĄ V. Wyniki obrazowania, przedstawione na Rys. 6.3 i Rys. 6.4, zostały uzyskane przy sposobności oficjalnych badań wspomnianego wcześniej programu ukierunkowanego na rozwój specyficznych technik obrazowania przerw pomiędzy kośćmi a metalowym implantem.

W zgłoszonym programie, na który został przyznany odpowiedni czas dostępu do wiązki, używano zupełnie innego systemu detektorowego. Jednakże widok bardzo cienkiej przerwy na uzyskanym obrazie radiograficznym uwidocznił wysoką jakość obrazowania, jaką można osiągnąć przy użyciu detektorów MAPS.

6.3.2. Obrazowanie obiektu zawierającego elementy różnej gęstości na przykładzie obrazu insekta

Inny przykład obrazu radiograficznego jest pokazany na Rys. 6.5. Obiekt w postaci małego chrabąszcza został wybrany z powodu obecności takich składników, jak: tkanka miękką, chitynowy pancerzyk, cienkie czułki itp., dającą różny kontrast na obrazie. Energia wiązki fotonów wynosiła 5,2 keV. Ciemny ślad na dole obrazu odpowiada fragmentowi drutu żelaznego użytego w celu referencyjnym, gdyż było wiadomo, że będzie dawał silny kontrast, do oznaczenia kierunku skanowania. Jak w poprzednim doświadczeniu, obraz radiograficzny insekta został uzyskany przy przesuwaniu stołu z detektorem w 55 zaprogramowanych krokach. W każdym kroku zbierano 22 pojedyncze ramki, które były następnie sumowane. Obraz końcowy powstawał przez złożenie na jednym obrazie fragmentów (pasków), które były naświetlone w każdym z kolejnych kroków.

Rys. 6.5 Obraz radiograficzny głowy chrabąszcza; obraz otrzymany przy energii wiązki wynoszącej 5,2 keV [82].

Na uzyskanym obrazie została z dużą dokładnością odwzorowana morfologia obiektu. Wyraźnie widać szczegóły budowy anatomicznej insekta, które są odzwierciedlone dzięki różnicyom w pochłanianiu promieniowania X.
6.4. Testy możliwości liczenia fotonów X

Celem testów możliwości liczenia fotonów X z wiązki promieniowania synchrotronowego było znalezienie największej liczby uderzeń pojedynczych fotonów, powyżej której sygnały pochodzące od kolejnych wielokrotności uderzeń fotonów nie mogą być już wyodrębnione z tła. Detektory MAPS są urządzeniami całkujących sygnał przy akumulacji zbieranego ładunku. Ładunek pochodzący z uderzeń więcej niż jednego fotonu w przedziale jednego czasu integracji, który jest równy czasowi odczytu detektora dla układu MIMOSA V, jest dodawany do zgromadzonego już ładunku na pojemności piksela. Ostatecznie sygnał napięciowy odpowiadający skumulowanemu ładunkowi jest odczytywany z piksela w wyniku konwersji na napięcie na pojemności wejściowej wtórnika napięciowego. W przypadku detektora charakteryzującego się bardzo niskim szumem i pełną wydajnością zbierania ładunku liczba padających fotonów z monoenergetycznej wiązki może być określona z wielkości scalkowanego sygnału po jego odczytaniu. Szum w przypadku detektora MAPS jest bardzo mały. W ogólnym przypadku, jednak zbieraný ładunek jest dzielony pomiędzy sąsiednie piksele, a wydajność zbierania ładunku nie jest pełna. Część ładunku jest tracona w wyniku rekombinacji podczas dyfuzji.

Rys. 6.6 Kolimator używany w eksperymencie wykonany z czterech walców żelaznych pozwalający na uzyskanie plamki wiązki o wymiarach 10 μm.

21 Wybór niższej energii powodował silną obecność harmonicznej trzeciego rzędu przepuszczanej przez monochromator, która nie była wystarczająco tłumiona przez folię aluminiową, a która była widziana przez detektor.
W odróżnieniu od wcześniej stosowanej dyskryminacji kierującej się wielkością stosunku sygnału do szumu, w obecnej analizie zastosowano cięcia bezpośrednio na sygnał. Związane to było z faktem dokładnej znajomości miejsca na detektorze, w którym rejestrowane mogły być sygnały pochodzące od fotonów. W programie analizy danych zastosowano cięcie na poziomie 25 ADCU na sygnał z klastra składającego się z 3×3 sąsiednich pikseli. Sygnały powyżej progu 25 ADCU były traktowane jako pochodzące od uderzeń fotonów. Obraz okna o wymiarach 26×26 pikseli, na którym dokonano projekcji wszystkich wejść zidentyfikowanych jako uderzenia fotonów w programie analizy, jest pokazany na Rys. 6.7. Jest to obraz szczeliny kolimatora uzyskany przy energii wiązki wynoszącej 12 keV.

Większość fotonów przechodzących przez kolimator pada na centralny punkt obrazu. Ustalono, że pojedynczy foton o energii 12 keV (przy wybranym ustawieniu wzmocnienia detektora) skutkował wielkością sygnału wynoszącą około 150 ADCU. Można było zauważyć jednak pojawiające się pojedyncze przypadki leżące poza punktem centralnym. Były one głównie zlokalizowane na osiach odpowiadających przerwom pomiędzy walcami. Jako że były to przypadki uderzeń pojedynczych fotonów, to wybierając właśnie tylko te przypadki uderzeń leżących poza centralnym punktem, zbudowano widmo pojedynczych fotonów, konieczne do kalibracji. Wynik jest pokazany na Rys. 6.8. Położenie piku przypada na około 150 ADCU. Klastry budowane były z 5×5 pikseli poprzez dodanie kolejnych sąsiadów do pierwotnych klastrów złożonych z 3×3 pikseli, na których stosowano dyskryminację na poziom sygnału.

W kolejnym kroku skupiono się na konstrukcji widm sygnału z pikseli leżących bezpośrednio naprzeciw otworu kolimatora. Zmieniając intensywność wiązki, otrzymano widma dla różnych liczb fotonów uderzających w detektor dla tej samej długości czasu integracji. Wiadomo, że liczba padających fotonów w przedziale jednego czasu integracji podlega rozkładowi Poissona. Zatem jeśli wykona się wielokrotne powtórzenia eksperymentu, zachowując tę samą średnią intensywność wiązki, możliwe jest przez wykreślenie rozkładu statystycznego liczby zliczeń i dopasowanie rozkładu Poissona wyznaczenie pierwotnie nieznanej średniej intensywności wiązki. Wybrane dwa przykłady z wielu uzyskanych histogramów są pokazane na Rys. 6.9 i Rys. 6.10.
Rys. 6.8 Widmo fotonów o energii 12 keV dla klastra złożonego z 5×5 pikseli uzyskane dla przypadków uderzeń pojedynczych fotonów pochodzących z obszaru poza płaszczyzną koliatora.

Z dopasowania rozkładu Poissona uzyskano odpowiednio, że pierwsze widmo zostało zarejestrowane dla mniej niż jednego fotonu uderzającego średnio w detektor w czasie ekspozycji, a drugie odpowiednio dla około 10 fotonów.

Rys. 6.9 Widmo pokazujące rozkład statystyczny liczby fotonów uderzających w detektor (średnio mniej niż jeden foton przypadna na czas jednej akwizycji i uderza w ten sam punkt w czasie jednej akwizycji dla klastra złożonego z 5×5 pikseli); widmo uzyskane dla przypadków uderzeń bezpośrednio z obszaru płaszczyzny koliatora dla energii wiązki 12 keV.

Histogramy cechują się obecnością wielokrotnych pików, wynikających z konwersji liczby fotonów odpowiadającej krotności pików zgodnie z rozkładem Poissona. Można zauważyć, że kontrast, zdefiniowany jako stosunek wysokości pików do poziomu tła im towarzyszącego, zdecydowanie pogarsza się dla większych krotności uderzeń fotonów. Odpowiedź detektoa na uderzenia więcej niż jednego fotonu jest konwolucją odpowiedzi na pojedynczy foton. Prosta symulacja MonteCarlo, przeprowadzona w analogiczny sposób jak dla przypadku elektronów dyskutowanego w rozdziale 5.5.5.3, pozwoliła na symulację widma uzyskanego z konwolucji odpowiedniej liczby widm pochodzących z pojedynczych fotonów. Symulacje MonteCarlo zostały wykonane w celu jakościowego potwierdzenia wyników osiągniętych w pomiarach.

107
Rys. 6.10 Widmo pokazujące przypadki, kiedy więcej niż jeden fotony (średnio około 10 fotonyów) przypada na czas jednej akwizycji i uderza w ten sam punkt w czasie jednej akwizycji dla klastra złomowanego z 5×5 pikseli; widmo uzyskane dla przypadków uderzeń bezpośrednio z obszaru płaszczyzny koliatora dla energii wiązki 12 keV.

Wyniki analizy MonteCarlo, służącej do wyznaczenia kształtów histogramów dla uderzeń fotonyów zgodnie z rozkładem Poissona dla różnych wartości średnich rozkładu, są pokazane na Rys. 6.11. Do uzyskania wyników konwolucji posłużono się zmiernym widmem dla pojedynczych fotonyów, które to widmo użyto do definicji funkcji gęstości prawdopodobieństwa, a następnie posłużono się nią do losowej generacji sygnałów w symulacji.

Na Rys. 6.11 przedstawiono widma dla wartości średnich wynoszących kolejno: 2 fotony/piksel, 4 fotony/piksel, 6 fotony/piksel, 10 fotony/piksel oraz końcu 12 fotony/piksel uderzających w detektor przez czas pojedynczej integracji. Porównując histogramy otrzymane w wyniku pomiarów i przeprowadzonych symulacji dla średniej liczby fotonyów wynoszącej 10 na jeden czas integracji, można zauważyć, że jakościowo i ilościowo rozkłady są bardzo zbliżone. Sposzczenie to potwierdza, że model przyjęty do wyjaśnienia utraty możliwości odzyskania liczby padających fotonyów na detektor ze zintegrowanego sygnału dla monokretycznej wiązki, a więc zliczania tych fotonyów, był poprawny. W ten sposób pokazano, że nie można podać innego przyczynku do przyrostu tła do poziomu równej wysokości pików niż niepewność, a więc i rozmycie, jaka zachodzi w okresleniu zebranego ładunku dla pojedynczego przypadku uderzenia fotony. Przy czym należy zaznaczyć, że to obserwowane rozmycie jest znacznie większe niż szum układu elektronicznego, bo istnieją bardziej znaczące fluktuacje w samym sygnale. Dla układu MIMOSA V zwiększenie liczby fotonyów uderzających w detektor w jednym czasie integracji do wartości średniej powyżej 10 powoduje, że oddzielne piky stają się nierozróżnialne, ginąc w szerokim, rozmytym tle sygnału. Dokładniejsze porównanie wyników eksperymentalnych i analiz MonteCarlo pozwala dostrzec pewne różnice w zdolności rozróżnienia pików pochodzących od wielokrotnych uderzeń fotonyów w detektor. Różnice te są jednak niewielkie i są spowodowane błędem wyznaczenia dokładnej wartości średniej liczby uderzających fotonyów na podstawie rozkładów uzyskanych z danych eksperymentalnych. Przez wykonanie pomiarów na wiązce promieniowania synchrotronowego oraz posługując się symulacjami MonteCarlo pokazano granice, dla których odzyskanie informacji o liczbie padających fotonyów jest możliwe dla układu MIMOSA V.
Rys. 6.11 Wyniki analizy MonteCarlo służące do wyznaczenia kształtów histogramów dla uderzeń fotonów zgodnie z rozkładem Poissona dla różnych wartości średnich rozkładu; widmo pojedynczych fotonów a), widmo dla wartości średniej wynoszącej 2 foton/piksela b), widmo dla wartości średniej wynoszącej 4 foton/piksela c), widmo dla wartości średniej wynoszącej 6 fotonów/piksela d), widmo dla wartości średniej wynoszącej 10 fotonów/piksela e), widmo dla wartości średniej wynoszącej 12 fotonów/piksela f).

7. **Wpływ promieniowania na detektor oraz konstrukcja diod zbierających ładunek o zredukowanym prądzie upływu i zwiększonej odporności na promieniowanie**

Zastosowanie detektorów MAPS do obrazowania przy wykorzystaniu promieniowania jonizującego nakłada wymagania na ich konstrukcję w zakresie wytrzymałości tych urządzeń na negatywne efekty związane z absorpcją energii promieniowania. Wpływ promieniowania na detektor jest silnie uzależniony od natury tego promieniowania i energii nieścionej przez cząstki uderzające w detektor lub przez niego przelatujące. Stopień zniszczeń zależy również od polaryzacji detektora i stanu elektronicznych układów odczytowych.

Rodzaj zniszczeń i ich ilościowe rezultaty zależą nie tylko od energii, jaka jest bezpośrednio deponowana w materiale detektora, ale również od miejsca w detektorze, które odczuwa skutki ekspozycji. Padające promieniowanie powoduje: zniszczenia struktury krystalicznej materiału detektora, zrywanie wiązań na granicach ośrodków i wytwarzanie stanów powierzchniowych oraz gromadzenie ładunku przez warstwy dielektryków. W przypadku ekspozycji detektora na niskoenergetyczne promieniowanie X i strumienie elektronów o energiach niewielkich niż kilkuset kiloelektronowoltów nie występują wszystkie wymienione efekty.

Najpoważniejszym skutkiem generacji stanów powierzchniowych i gromadzenia się ładunku w warstwach dielektrycznych jest z reguły wzrost prądów upływu, który pociąga za sobą wzrost szumu i ograniczenie zakresu dostępnego na sygnały użyteczne. W przypadku detektorów MAPS krytyczne jest opracowanie takiej struktury diod zbierających ładunki, która będzie charakteryzować się niewielkim pradem upływu. Istotne jest, aby prąd upływu diody detekторa był niewielki przed jakąkolwiek ekspozycją oraz aby przyrost prądu upływu w czasie pracy detekторa i ekspozycji na promieniowanie był również niezrozumiany. Dodatkowo ważne jest, aby wypracowana konstrukcja była możliwa do zrealizowania bez użycia dodatkowych masek oraz projekt masek, konieczny do jej otrzymania, nie był związany ze złamaniem regul projektowych.

7.1. Ogólny podział efektów radiacyjnych

W rozdziale tym uwaga jest skupiona na bliższej analizie wspomnianych trzech typów efektów radiacyjnych w urządzeniach półprzewodnikowych.

Efektem, zachodzącym przy dostatecznej energii i dla cząstek obdarzonych masą (neutrony, protony itp.), jest wybijanie atomów z ich pozycji w sieci krystalicznej; kolejnymi efektami, zachodzącymi dla cząstek jonizujących (elektrony, protony, fotony itp.), jest generacja zniszczeń na granicy ośrodków (ang. interface defects) i przejściowa lub długotrwała jonizacja ośrodka (w istocie działanie detektorów oparte jest na zbieraniu ładunku generowanego w przejściowej jonizacji ośrodka). Jonizacja długotrwała zachodzi głównie w obszarach dielektryka i prowadzi do ustalenia trwałej koncentracji nośników ładunku w tych regionach. Efekty związane z przemieszczaniem atomów z ich pozycji w sieci krystalicznej powodują zmiany parametrów elektrycznych materiału podłoża, takich jak czas życia nośników, rezystywność, a nawet w przypadkach ekstremalnych dochodzi do konwersji typu przewodnictwa i całość tych efektów klasyfikowana jest jako zniszczenia w objętości materiału podłoża (ang. bulk damage).

Dyslokacje mogą zachodzić dla energii uderzających cząstek przekraczającej odpowiednie wartości progowe. Porcja energii przekazana do atomu w sieci krystalicznej wyrażana jest przez NIEL. Wartość tej przekazanej energii jest charakterystyczna dla danego rodzaju cząstki i zależy od wartości energii, jaką dysponuje cząstka. NIEL dla celów praktycznych jest skalowana do ekwiwalentnego strumienia neutronów o energii 1 MeV, powodującego takie same zniszczenia radiacyjne jak rozwijane promieniowanie o danym rozkładzie energii [72].

Generacja ładunku pułapkowanego oraz generacja zniszczeń na granicy ośrodków określane są mianem zniszczeń powierzchniowych (ang. surface damage). Efektami oddziaływania promieniowania jonizującego są: gromadzenie nośników, najczęściej ładunku dodatniego, w materiale tlenku wypełniającego obszary izolacji między elementami aktywnymi STI/FOX (ang. Shallow Trench Isolation STI / Field Oxide FOX), zrywanie wiązań chemicznych pomiędzy atomami na granicy pomiędzy obszarami zbudowanymi z różnych materiałów oraz pułapowanie nośników ładunku na granicy pomiędzy obszarami w pu-

22 W niektórych przypadkach naruszenie regul projektowych jest możliwe i nie niesie ze sobą negatywnych skutków; wymagana jest jednak akceptacja przez producenta układów scalonych żądanych odstępstw.
łapkach wynikających z rozciągniętych lub zerwanych wiązań chemicznych. W wyniku
gromadzenia ładunku dodatniego w tlenku może dochodzić do inwersji materiału typu P
w bezpośrednim sąsiedztwie granicy pomiędzy Si a SiO2, a w konsekwencji do wytworze-
nia ścieżki przewodzącej, mogącej łączyć sąsiednie wyspy o domieszkowaniu typu N23.
Gęstość stanów na granicy pomiędzy Si i SiO2 zależy silnie od parametrów i rodzaju proce-
sów użytym w wytwarzaniu struktury. Istotną rolę odgrywają np. rodzaje trawienia, sposób
tworzenia warstwy tlenku i temperaturę. Gęstość stanów na granicy Si i SiO2 decyduje
bezpośrednio o prądzie upływu. W skali makroskopowej zniszczenia materialu podłoża
przejawiają się poprzez zwiększenie prądu upływu, co prowadzi do podwyższenia szumu
śrutowego oraz obniżenia ilości zbieranego ładunku [71].

7.2. Ustalenia dotyczące odporności radiacyjnej
detektorów MAPS

Wpływ zniszczeń radiacyjnych materiału podłoża na pracę detektora został przebadany
da detektorów MAPS. W wyniku prac ustalono ekwiwalentny strumień neutронów o ener-
gii 1 MeV wynoszący 1012 n1 MeV/cm² jako taki, przy którym straty w zbieranym ładunku
stały się krytyczne [84]. Zniszczenia materiału podłoża narastają wraz z przyrostem całko-
witego zintegrowanego strumienia cząstek promieniowania przypodobującego na jednostkę
powierzchni. Zapobieżenie akumulacji zniszczeń czy redukcja ich negatywnych skutków
wpływających na pracę detektora są z reguły silnie ograniczone ze strony projektowej de-
tektora monolitycznego i leżą właściwie poza zasięgiem technik projektowania masek.
Jedną z nielicznych możliwości pozostających do wykorzystania w standardowej technolo-
gii CMOS dla przeciwdziałania pogorszeniu wydajności detektora jest możliwość skróce-
nia czasu zbierania ładunku. Można to skrócenie uzyskać przez zastosowanie odpowiednie-
go rodzaju diod zbierających ładunku i ich rozkładu. Zastosowanie tzw. głębokich studni
otypu N lub gęstego rozkładu diod na powierzchni piksela [14], połączonych do jednego
kanalu odczytowego, pozwalają na szybsze, a co za tym idzie na wydajniejsze zbieranie
ładunku z detektora. Głębokie studnie typu N są dostępne w nowoczesnych technologiach
submikrometrowych z potrójnymi studniami (ang. tripple well) [85], gdzie ich rola związa-
ną jest z zapewnieniem izolacji podłoży tranzystorów.

Mimo swojej niewielkiej masy elektrony mogą również powodować dyslokacje atomów.
Energia progowa dla elektronów, jaka jest konieczna do wybicia pojedynczego atomu
krzemu z jego położenia w sieci krystalicznej, wynosi około 260 keV. Odpowiednio ener-
gia progowa dla wywoływania zniszczeń w postaci rozległego klastra leży w zakresie około
5 MeV [86]. We wszystkich zagadnieniach rozważanych w niniejszej pracy, z wyjątkiem
zastosowań w transmijsyjnej mikroskopii elektronowej, zakres energii elektronów znajduje
się poniżej progu dla zniszczeń materiału podłoża. Jednak nawet w przypadku mikroskopii
elektronowej, mimo wystarczającej energii, całkowity zintegrowany strumień elektronów
jest zbyt mały, aby wywołać mierzalne zniszczenia materiału podłoża. Istotny natomiast
jest przekaz energii związany z jonizacją ośrodka oraz z generacją defektów powierzch-
niowych. W zależności od aplikacji pochłonięte dawki jonizacyjne mogą sięgać wartości

23 We współczesnych procesach technologicznych wytwarzania układów scalonych
najczęściej wykorzystuje się wafle o typie przewodnictwa P.
znacznie powyżej 1 Mrad. Dotyczy to mikroskopii elektronowej lub systemu monitorowania wiązki w terapii hadronowej.

Detektory MAPS są pokrewne monolitycznym detektorom pikselowym realizowanym w technologii scalonej CMOS, które są obecnie używane w cyfrowych aparatach fotograficznych i kamerach powszechnego użytku, jak również w instrumentach naukowych rejestrujących promieniowanie w zakresie światła widzialnego, np. w teleskopach na platekach statków wysyłanych w przestrzeń kosmiczną. Jeśli chodzi o detektory pikselowe, używane w przestrzeni kosmicznej, to ich odporność na zniszczenia wynikające z absorpcji dawek jonizacyjnych nie jest jednak wymagana w takim zakresie, jak jest to konieczne dla detektorów MAPS w aplikacjach opisanych w tej pracy. Nieliczne analizy dotyczące aplikacji w kamerach przewidzianych dla instrumentów wysyłanych w przestrzeń kosmiczną ograniczają się do przyjęcia przez detektor dawek nieprzekraczających kilku-kilokiladiów.

Do testów tych urządzeń najczęściej wykorzystywane są protony, dla których niemożliwe jest oddzielenie efektów o różnej naturze i osobne przeanalizowanie zniszczeń materiału podłoża i zniszczeń powierzchniowych. Pogorszenie wydajności zbierania ładunku jako wynik ekspozycji na strumień protonów jest czasami nieprawdopodobne zbierane jako zmiana współczynnika konwersji ładunku na sygnał elektryczny [87]. Obserwowaną obiektywną jest natomiast wzrost netto prądu upływu wraz z występującymi jego fluctuacjami w postaci np. sygnałów RTS (ang. Random Telegraph Signal) [88]. W mianodajnych testach odporności detektorów na promieniowanie wskazane jest posługiwanie się osobno promieniowaniem X dla wyodrębnienia zniszczeń pochodzących od jonizacji i neutronów dla wydzieleń zniszczeń strukturalnych.

Poziom prądu upływu diod zbierających ładunek jest jednym z czynników makroskopowych, decydujących o jakości detektoru. W testach wykorzystujących niskoenergetyczne promieniowanie X wykazano, że przyrost prądu upływu po absorpcji dawki promieniowania jonizującego przez detektor MAPS może wynosić nawet kilka rzędów wielkości [89]. Poziom prądu upływu decyduje o przydatności detektoru i możliwości jego używania w danych warunkach. Wysoki prąd upływu prowadzi do szybkiego nasycania się odpowiednich pikseli w czasie akumulacji sygnału i zmniejszenia SNR w wyniku pojawienia się istotnego przyczynku szumu śrutowego. Utrzymanie prądu upływu na niskim poziomie jest możliwe dzięki chłodzeniu detektoru. Aplikacje z zakresu obrazowania są jednak znacznie prostsze do realizacji, jeśli możliwa jest praca w temperaturze pokoju lub w warunkach wymagających tylko słabego chłodzenia.

Zapewnienie początkowego niskiego prądu upływu, jak również ograniczenie jego wzrostu po ekspozycji na promieniowanie jonizujące, mogą być osiągnięte przez zastosowanie odpowiednich struktur diod zbierających ładunek. Przy budowie detektóra MAPS na potrzeby śledzenia cząstek reloswistycznych w eksperymentach fizycznych wykazano, że przy zachowaniu pewnych rozwiązań projektowych ten typ detektorek może wytrzymać dawki promieniowania jonizującego przekraczające 1 Mrad [78][79].

Na rozważenie zasługuje przypadek ekspozycji detektorów na promieniowanie od strony, na której nie ma elementów elektronicznych układu odczytowego. Taki tryb pracy jest udziałem rozważanego wcześniej układu MIMOSA V w wersji BS oraz, przedstawionego w następnym rozdziale, układu MIMOTERA. W wyniku ekspozycji na niskoenergetyczne elektrony dla obydwu układów dochodzi do bezpośredniego przekazu energii elektronów w spodnie części detektor. Padające na detektor elektryny nie docierają do obszaru, gdzie ulokowane są diody zbierające ładunek i układ elektroniczny. Jednakże w procesie hamo-
wania elektronów, wchodzących od spodu do detektora, emitowane są fotony promieniowania X. Mogą one dochodzić do warstwy zawierającej układy elektroniczne i deponować tam swoją energię, wywołując zniszczenia. Całkowity efekt jest jednak dużo mniejszy ze względu na niewielką część energii elektronu konwertowaną na promieniowanie X o odpowiednim zasięgu.

7.3. Sposoby wpływu na odporność urządzeń półprzewodnikowych na promieniowanie

W świetle wcześniejszego wprowadzenia zagadnienia poprawy jakoś detektorów MAPS na zniszczenia związane z przekazem energii przez jonizację zasługują na obszerniejszą dyskusję. W związku z faktem, iż detektor monolityczny jest połączeniem elektronicznych układów odczytowych i elementów zbierających ładunek z objętości aktywnej detektoru, zagadnienia projektowe zmierzające do poprawy jakośności na promieniowanie można potraktować osobno dla elektronicznego układu odczytowego i samego detektora. Wykazano, że układy scalone projektowane w nowoczesnych technologiach sub-mikrometrowych, szczególnie w procesach o długości bramki 130 nm i mniej, są niewrażliwe na promieniowanie jonizujące w zakresie dawek sięgających nawet kilkuset megarađów. Tę niewrażliwość zapewnia naturalna odporność bardzo cienkiego tlenku pod bramką tranzystora na gromadzenie ładunku oraz stosowanie efektywnych metod projektowych opracowanych w CERNie w Genewie. Metoda ta polega na konsekwentnym stosowaniu tranzystorów NMOS o zamkniętych bramkach o implantacji typu N 24. Szczególnie zalecane jest używanie tranzystorów o zamkniętej geometrii bramki dla bloków analogowych, wymagających wysokiej dokładności.

Dla poprawy jakości detektorów MAPS konieczne jest zadbanie o niski prąd upływu wpływający do wężła zbierającego ładunek. Istotną rolę odgrywa w tym punkcie projekt diody zbierającej ładunek oraz tranzystorów mających bezpośredni kontakt z tym wężlem. Dlatego tranzystor przywracający wsteczną polaryzację na diodzie zbierającej ładunek w detektorze MAPS powinien być zaprojektowany w geometrii zamkniętej bramki. Kluczem do zmniejszenia prądu upływu diody jest zadanie o minimalizację obszarów grubego tlenku, mających bezpośredni kontakt ze złączem, i przecięcie ścieżek przewodzenia prądów przewodzących. Rozważając możliwe rozwiązania dla ulępnienia diody zbierającej ładunek, należy wykazywać ostrożność, aby przy zastosowaniu metody zwiększającej odporność na promieniowanie nie spowodować pogorszenia innych parametrów detektora, takich jak np. współczynnik konwersji diod na napięcie, czy efektywność zbierania ładunku. Rozwiązania rozwiązane przez mnie z uwzględnieniem tego zastrzeżenia są przedstawione w podrozdziale 7.4.

24 Stosowanie tranzystorów o zamkniętej geometrii bramki oraz pierścieni zabezpieczających dla rozgraniczania obszarów o implantacji typu N było konieczne w technologii o długości bramki wynoszącej 250 nm; dla technologii o długości bramki 130 nm i mniejszej zaleca się używanie tranzystorów zamkniętych jedynie dla części analogowych, wymagających wysokiej dokładności, takich jak np. układy próbkujo-pamiętające.
Innym efektem, jaki był obserwowany w pomiarach odporności detektorów MAPS na promieniowanie, było pogorszenie wydajności zbierania ładunku po przyjęciu relatywnie niewysokich dawek promieniowania rządu do kilkuset kiloradów. Problem ten nie został w pełni zrozumiany. Znaleziono jednak empirycznie jego rozwiązanie poprzez użycie diod zbierających ładunek o wymiarach znacznie większych niż wymiary minimalne dozwolone w procesie technologicznym [90].

7.4. **Struktury diod zbierających ładunek w detektorze MAPS**

charakteryzujące się obniżonym prądem upływu

Promieniowanie jonizujące powoduje zwiększenie gęstości stanów na granicy pomiędzy ośrodkami, zmienia ich rozkład energetyczny, wprowadzając nowe poziomy energetyczne w paśmie zabronionym. Defekty mogą zachowywać się jako centra akceptorowe lub dojrzewa w zależności od położenia poziomu energetycznego, mogą pułapować nośniki zbieranego ładunku oraz uczestniczyć w termicznej generacji prądu upływu. Obszar przypowierzchniowy staje się źródłem prądu upływu. Dochodzi do tego głównie w dwóch przypadkach: po pierwsze, jeśli w wyniku polaryzacji diody zbierającej ładunek obszar przypowierzchniowy znajdzie się w obszarze lateralnego pola elektrycznego powstającego na przykład na granicy pomiędzy przeciwnymi typami przewodnictwa, lub po drugie, jeśli w wyniku akumulacji ładunków w dielektryku dojdzie do wytworzenia kanału przewodzącego, który ciągną prąd upływu z większej powierzchni detektora. W celu zapewnienia jak najmniejszego poziomu prądu upływu w detektorze oraz minimalizacji efektów związanych z absorpcją promieniowania należy wykazywać szczególną troskę o jakość obszaru granicznego pomiędzy Si i SiO₂ w bezpośrednim sąsiedztwie implantu diody zbierającej ładunek, a w szczególności w obszarach z polem elektrycznym.

Proces tworzenia izolacji STI bazuje na wykorzystaniu plazmy jonów (ang. **Reactive Ion Etching** – RIE) do wytrawiania pustych obszarów, które są następnie wypełniane SiO₂ z osadzania chemicznego (ang. **Chemical Vapour Deposition** – CVD). Taki sposób trawienia pozostawia po sobie obszar o dużej gęstości stanów powierzchniowych. Po wypełnieniu wytrawnionych obszarów i osadzeniu SiO₂ stosuje się w procesie technologicznym kroki pozwalające na pasywny stan na granicy Si–SiO₂ przez wysycenie niezakonczonych wiązań atomowych, np. w czasie wygrzewania w atmosferze wodorowej. Deponowana energia promieniowania jonizującego powoduje zrywanie wytworzonego wiązań. W wyniku istniejącego pola elektrycznego uwalniane jony ulegają przemieszaniu i ostatecznie na granicy ośrodków Si–SiO₂ ustala się wysoka gęstość pułapek i centrów generacyjno-rekombinacyjnych. Gęstość tych stanów powierzchniowych nie jest równomierna. Orientacja kryształu wafel krzemowego używanego do produkcji układu scalonego w technologii planarnej jest zazwyczaj 100, co skutkuje najmniejszym upakowaniem atomów na powierzchni. Gęstość pułapek jest znacznie wyższa na pionowych ścianach obszarów izolacji STI ze względu na odsłonięcie kryształu wzdłuż płaszczyzn krystalograficznych o znacznie większej gęstości atomów na powierzchni. Użycie trawienia plazmowego powoduje również zanieczyszczenie płynkich warstw przy powierzchni, co nawet przed napromieniowaniem skutkuje podwyższonym prądem upływu ze struktur zawierających izolację STI.

Izolacja FOX, używana w starszych rodzinach procesów technologicznych, uzyskiwana jest
w procesie termicznego narastania SiO₂ i powstały obszar graniczny Si–SiO₂ charakteryzuje się mniejszą gęstością centrów odpowiedzialnych za generację prądu upływu. Jednakże izolacja za pomocą tak uzyskiwanego tlenku nie pozwala na wysoką gęstość upakowania układów elektronicznych i dlatego nie jest używana w technologiach submikrometrowych. Dodatkowym efektem, towarzyszącym absorpcji energii promieniowania jest możliwość akumulacji nośników ładunku dodatniego oraz utrzymywanie stałego dodatniego lub ujemnego ładunku zajmowanych pułapek. ładunek ten może prowadzić do zmian rozkładu pola elektrycznego w detektorze, a w konsekwencji do zmian warunków zbierania ładunku. Przekrój ukazujący konstrukcję standardowej diody n–well/p–epi zbierającej ładunek, zrealizowanej w procesie technologicznym CMOS z izolacją STI, jest pokazany na Rys. 7.1. ładunek pułapkanwany w zaznaczonych grubych warstwach tlenku izolacyjnego nie może być usuwany ze względu na niezwykle niską ruchliwość dziur. Na rysunku zaznaczono również obszary o dużej gęstości stanów powierzchniowych i pułapkanowania.

Rys. 7.1 Przekrój ukazujący konstrukcję standardowej diody n–well/p–epi zbierającej ładunek.

Z przedstawionej analizy można wyciągnąć następujące wnioski dla projektowania diod zbierających ładunek w celu zapewnienia podwyższonej odporności na promieniowanie detektorów MAPS:

1. Należy unikać rozciągania obszarów implantowania diody (studni typu N) oraz obszaru zmiany homogenizowania (studni typu N / studni typu P) pod obszary STI.
2. Należy tak projektować obszary znajdujące się w bezpośrednim sąsiedztwie implantu diody, aby ten jak i granica Si–SiO₂ nie były wystawione na trawienie jonowe w czasie początkowych kroków procesu technologicznego.
3. Należy unikać obecności obszarów grubego tlenuk w bezpośrednim sąsiedztwie implantu diody zbierającej ładunek.

Zalecenia te pokrywają się z kierunkami, które można znaleźć w niektórych opracowaniach, np. [91][92][93]. W pracach tych można znaleźć propozycje rozwiązań poprawiających prądy upływu diod zbierających ładunek w detektorach. Są one jednak podane w odrębnym źródle reguł projektowych dla układów scalonych albo wymagają dedykowanego procesu technologicznego. Szczególnie w drugim przypadku te podane idee są nieużyteczne, gdyż w zasadzie detektor MAPS powinien móc być zaprojektowany w standardowym procesie produkcji układów scalonych. Dlatego zdecydowaliśmy się dokonać

25 W przypadku warstw tlenuku o grubościach poniżej 10 nm dodatni ładunek nie ulega akumulacji, gdyż jest szybko usuwany dzięki zjawisku tunelowania.
analizy, w jaki sposób zaprojektować diodę zbierając ładunek zgodnie z wcześniej wymienionymi zaleceniami, wykorzystując te możliwości, jakie są dane przy użyciu komercyjnego procesu technologicznego. Istotnym ograniczeniem, jakiemu musi stawić czoło projektant w dążeniu do poprawy odporności radiacyjnej, jest albo całkowite uniknięcie łamania reguł projektowych, albo co najwyżej ich świadome naruszenie, ale jedynie w takim zakresie, żeby nie stwarzało to sytuacji, w której wykonanie jakichkolwiek kroków w procesie mogłoby skutkować niepowodzeniem produkcji. Ilustracje wybranych dwóch pierwszych przykładów rozwiązań konstrukcyjnych zmierzających do zapewnienia niskiego poziomu prądu upływu diod zbierających ładunek oraz odporności na promieniowanie jonizujące są pokazane na **Rys. 7.2.**
jest nazywana *active* i implantacji obszaru typu N⁺. Obszar N⁺ jest poszerzony przez lekko domieszkowane wypustki, będące w tranzystorach częściami drenu i źródła (ang. *N Lightly Doped Drain* – NLDD), które rozciągają się na zewnątrz studni typu N i znajdują się w bezpośrednim kontaktzie z obszarem typu P⁺. Koncentracja domieszek w obszarze typu P⁺ jest wysoka i nie może dojść do inwersji tego obszaru przez ładunek dodatni, jaki może być zgromadzony w tlenku. Jak można zauważyć, dioda zbierająca ładunek nie wchodzi w kontakt z żadnym miejscu z grubym tlenkiem, jak również ścieżki prądów powierzchniowych mogących dochodzić do diody są odcięte od diody. Na **Rys. 7.2b** pokazana jest struktura, która różni się od tej omówionej wcześniej tym, że implantacja typu N ponad diodą zbierającą ładunek jest zastąpiona przez pierścień z polikrzemu. Użycie ekranu z polikrzemu służy do wyłączenia obszaru ponad diodą z trawienia jonowego, pozwalając na zmniejszenie pojemności wężła zbierającego ładunek przez eliminację bocznego złącza.

Wadą obydwu rozwiązań, przedstawionych na **Rys. 7.2**, są jednak duże rozmiary diody i znacząco zwiększona pojemność wężła zbierającego ładunek w stosunku do diody, której parametry związane z prądem upływu nie zostały poprawione. Przekrój ukazujący konstrukcję diody zbierającej ładunek wymagający nieznacznie większego taniego regul powyżej jest pokazany na **Rys. 7.3**. Jest to struktura, w której całkowitą eliminację grubego tlenku z obszaru stykającego się z diodą osiągnięto przez użycie maski wytworzenia obszaru tranzystora (*active*). Jednakże nie wybrano żadnego rodzaju domieszkowania ponad samą diodą. Brak wyboru domieszkowania nie jest przewidziany regulami projektowymi dla większości procesów, jednakże nie powoduje problemów w wytwarzaniu przy użyciu w standardowej technologii CMOS. W ten sposób uzyskane znacznie uproszczoną strukturę diody, niepodnoszącą pojemności elektroda zbierającego ładunek i pozwalającą na utrzymanie rozmiarów jedynie nieznacznie powiększonych w stosunku do konstrukcji diody oryginalnej. Taka struktura, jak przedstawiona na **Rys. 7.3**, została zastosowana w układzie MIMOTERA, który jest opisany w rozdziale 8. Zadanie o minimalizację prądu upływu miało bardzo duże znaczenie w projekcie MIMOTERY ze względu na duże rozmiary piksela i pokrycie piksela przez dwie zawiasz jące sieci równolegle połączonych diod. Pokrycie to było konieczne dla uniknięcia czasu martwego w pracy tego detektora.

![**Rys. 7.3** Przekrój ukazujący konstrukcję diody zbierającej ładunek zastosowaną w układzie MIMOTERA dla zmniejszenia prądu upływu.](image)

Dla struktur przedstawionych na **Rys. 7.2b** i **Rys. 7.3**, będących dwoma rozwiązaniami oferującymi ulepszone parametry diody, zaznaczone są plany masek służących do ich uzywania.
8. **MIMOTERA** – układ detektora MAPS przeznaczony do monitorowania w czasie rzeczywistym wiązki w terapii hadronowej

Układ MIMOTERA jest detektorem MAPS, dla którego wybrałem odpowiednią architekturę i który następnie zaprojektowałem jako finalne urządzenie w programie SUCIMA z przeznaczeniem do monitorowania wiązki w terapii hadronowej. Funkcję układu MIMOTERA jest obrazowanie przy użyciu elektronów pochodzących z emisji wtórnej z cienkiej folii aluminiowej (Al–Al₂O₃–Al) o grubości od 100 nm do 400 nm, przez którą przechodzi pierwotna wiązka jonów używana bezpośrednio w leczeniu. Folia nachylona jest pod kątem 45° w stosunku do wiązki pierwotnej, a elektrony wtórne, które są wyrywane przez wiązkę pierwotną przechodzącą przez folię, dostają się w poprzeczne pole elektryczne. W polu tym są przyspieszane, by ostatecznie uderzyć w detektor rejestrujący obrazy, w tym wypadku w układ MIMOTERA. Typowo używanymi w terapii hadronowej są strumienie protonów, których energia leży w zakresie od 60 MeV do 250 MeV, lub jonów ¹²C⁶⁺ o energii od 120 MeV do 400 MeV. Prąd wiązki leży w zakresie od pojedynczych pikoamperów dla jonów ¹²C⁶⁺ do około kilkudziesięciu nanoamperów dla protonów. Układ MIMOTERA był częścią urządzenia SLIM²⁷ (ang. *Secondary emission Low Interception beam Monitoring*) [94], będącego jednym z rezultatów projektu SUCIMA [26][27]. Urządzenie to zostało w pełni zaprojektowane i zbudowane w ramach projektu SUCIMA [95] po pomyślnym przeprowadzeniu procesu ścieniania na układzie MIMOSA V i po zakończeniu testów z tym ścienionym detektorem, tj. testów, które zostały zaprezentowane we wcześniejszych rozdziałach tej pracy.

8.1. **Szczegóły projektu układu MIMOTERA**

Decyzja o rozpoczęciu projektu MIMOTERA była uwarunkowana uzyskaniem potwierdzenia doświadczalnego, że jest możliwe precyzyjne ścienień detektora MAPS do warstwy epitaksjalnej i pomyślna rejestracja niskoenergetycznych elektronów z detektorem o takiej formie. Pozytywne potwierdzenie otrzymane w testach z układem MIMOSA V zdecydowało o rozpoczęciu projektu MIMOTERA.

²⁷ Za projekt urządzenia była odpowiedzialna fundacja TERA (Terapia con Radiazioni Androniche) z Włoch.
8.1.1. Założenia projektowe i specyfikacja parametrów projektowanego układu MIMOTERA

Wymagania wobec struktury i organizacji odczytu układu detekторa MIMOTERA zostały narzucone przez specyfikację dla systemu detekcyjnego, który miał dokładnie określić dawki oraz rozkład przestrzenny promieniowania używanego w leczeniu [96]. Maksymalny tolerowany błąd dystrybucji dawki promieniowania w obszarze poddającym leczeniu powinien być nie większy niż 2,5%. Jest to wymaganie kliniczne. System monitorowania wiązki powinien pozwolić na kontrolę rozmiaru plamki wiązki oraz rozkładu intensywności wiązki w obszarze plamki. Informacje te są konieczne do wykorzystania w sprzężeniu zwrotnym, w czasie rzeczywistym, do kontroli systemów ogniskowania i doboru apertury w liniach przesyłowych wiązki podczas terapii. Dawka promieniowania dostarczona do niszczonej tkanki rakowej powinna być dokładnie mierzona w czasie rzeczywistym. Bez systemd kontroli intensywności wiązki może dochodzić do lokalnych zanięć lub przekroczeń intensywności wiązki szacowanej pierwotnie jako konieczne do uzyskania zamierzonym efekta leczniczego, tj. zniszczenia tkanki rakowej z jak najmniejszymi skutkami ubocznymi. Wielkość czasowego okna pomiarowego powinna być na tyle mała, aby błąd w dostarczonej dawce nie przekroczył założonego wcześniej poziomu dla maksymalnych fluktuacji intensywności wiązki. W instalacjach do terapii hadronowej nierregularności intensywności wiązki mogą mieć również formę wysokoczęstotliwościowych zmian, na które system powinien reagować wysłaniem sygnału alarmu lub odcieniwięczki wiązki [96]. Jednakże system kontroli powinien być niecuzły na fluktuacje wysokoczęstotliwościowe parametrów geometrycznych w obszarze samej wiązki.

Analizując informacje dotyczące struktur czasowych wiązki mierzonych w instalacjach używanych do terapii hadronowej, w tym częstotliwości i czasu trwania gwałtownych sko-kół intensywności wiązki, założono dla projektu układu MIMOTERA czas integracji sy,gnału wynoszący 100 μs, jednocześnie stawiając jako wymóg zupełny brak czasu martwego w działaniu detektor. Rozdzielczość obrazu wiązki, określona jako dostateczna dla monitorowania prawidłowości przebiegu naświetlania i weryfikacji założonego planu terapeutycznego, powinna być nie gorsza niż około (1×1) mm². Wielkość typowego pola, w którym może poruszać się wiązka używana do terapii, wynosi około (7×7) cm². Rozmiar układu obrazującego wiązkę nie mógł przekroczyć maksymalnej wielkości pojedynczej kości układu scalonego, produkowanego w dostępie komercyjnie technologii CMOS. Typowa wielkość pojedynczej retikuły wynosi około (2×2) cm². Zatem zestawienie wielkości obszaru do obrazowania z maksymalną wielkością detektora MAPS, jaki może być zbudowany, jednoznacznie wskazuje na konieczność zaprojektowania urządzenia SLIM w taki sposób, aby obraz rzutowany na pласzczyznę detektora był kilkakrotnie pomniejszo-ny w stosunku do maksymalnego spodziewanego pola, w jakim mogła się poruszać wiązka używana do naświetlania.

Ostatecznie do budowy urządzenia SLIM, którego zasada pracy bazuje na przyspieszeniu i elektrostatycznym ogniskowaniu elektronów wtórnych na pласzczyznę detektora, zdecydowano się na około pięciokrotnie pomniejszenie obrazu, który po zogniskowaniu rzutowany jest na pласzczyznę detektora. Decyzja ta w połączeniu z wymogiem zapewnienia rozdzielczości obrazu wiązki, po uwzględnieniu współczynnika pomniejszenia obrazu, pozwoliła na zdefiniowanie rozmiaru piksela na nie więcej niż około (200×200) μm². Uwzględniając wielkość obszaru do obrazowania i wymiar piksela, otrzymano wielkość matrycy detektora nie mniejszą niż 5000 pikseli, które powinny być odczytywane w taki
sposób, aby nie było czasu martwego. Odczyty te powinny zachodzić w odstępach czasowych nie dłuższych niż 100 μs.

Symulacje przeprowadzone dla zaprojektowania urządzenia SLIM pokazały, że warunki jego optymalnej pracy są zapewnione dla napięcia przyspieszającego elektrony wtórnej emisji wynoszącego około 20 kV. Zatem detektor powinien być czuły na niskoenergetyczne elektrony o energiach nieprzekraczających 20 keV. Tylko ściślenie detektora do grubości warstwy aktywnej i jego ekspozycja od strony spodniej mogły spełnić ten ostatni wymóg. Maksymalne wartości prądu wiąże, jakie są używane w terapii hadronowej, sięgają kilku nanoamperów. Przekłada się to na bardzo szeroki zakres sygnałów, który musi mieścić detektor. Zakres ten rozciąga się od pojedynczych elektronów do prawie 10×10^7 elektronów na piksel w czasie 100 μs całkowania. Tak duże strumienie elektronów o energii wynoszącej 20 keV wiążą się z indukowaniem dużych dawek promieniowania jonizującego. Elektrony o takich energiach są jednak zatrzymywane w pierwszych kilku mikrometrach detektora. Ekspozycja zachodzi od spodu detektora. Z tych powodów elektroniczny układ służący do odczytu sygnałów z detektora jest naturalnie ekranowany od elektronów padających na detektor przez warstwę epitaksjalną. W konsekwencji nie powinien doświadczać znaczących zniszczeń radiacyjnych.

Główne wymagania i założenia projektowe dla układu MIMOTERA zostały zebrane w tabeli 8.1.

<table>
<thead>
<tr>
<th>Czułość detekcji / zakres energii</th>
<th>elektrony o energii $E \leq 20$ keV detekcja bezpośrednia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wielkość matrycy pikseli</td>
<td>całkowita liczba pikseli w matrycy ≥ 5000</td>
</tr>
<tr>
<td>Zakres rejestrowanych sygnałów</td>
<td>od pojedynczych e^-/piksel/100 μs do 10×10^7 e^-/piksel/100 μs</td>
</tr>
<tr>
<td>Szybkość odczytu matrycy</td>
<td>10 kfps (około 2% błędu oszacowania dawki), zupełny brak czasu martwego</td>
</tr>
<tr>
<td>Zakres dawki promieniowania jonizującego</td>
<td>od 5 rad/s do 5000 rad/s dawki promieniowania jonizującego z powodu elektronów uderzających na powierzchnię detektora</td>
</tr>
<tr>
<td>Wielkość obszaru do obrazowania</td>
<td>(7×7) cm², pięciokrotnie pomniejszenie oryginalnego obrazu wiąże przez elektrostacyjne ogniskowanie elektronów</td>
</tr>
<tr>
<td>Rozdzielczość / rozmiar piksela</td>
<td>Na płaszczyźnie oryginalnego obrazu wiąże (1×1) mm² / rozmiar piksela wynikający z pięciokrotnego pomniejszenia: (200×200) μm²</td>
</tr>
</tbody>
</table>

Tabela 8.1
Wymagania i założenia projektowe dla układu MIMOTERA
8.1.2. Struktura i projekt układu MIMOTERA

Układ MIMOTERA został przeze mnie zaprojektowany, a następnie został wysłany do produkcji przy użyciu procesu CMOS AMS 0,6 µm. Jest to ten sam proces, w którym został wykonany detektor MIMOSA V. Wymiary układu MIMOTERA wynoszą (17350×19607) µm². Rozmiar padów został powiększony względem układu MIMOSA V do (85×185) µm² w celu ułatwienia bondingu po ścieśnieniu detektora. Układ MIMOTERA został zaprojektowany jako matryca, w której składa wchodzi 112×112 kwadratowych pikseli o wymiarach (153×153) µm². Każdy piksel zawiera zbór małych diod n–well/p–epi. Diody są równomiernie rozłożone na obszarze całego piksela i są połączone w taki sposób, że jedna połowa z nich jest podłączona do jednego kanału odczytowego, a druga połowa do drugiego kanału odczytowego. Dla ustalenia odniesienia pierwsza grupa diod stanowi kanał A, a druga grupa diod stanowi kanał B. Oddzielnie wszystkie diody z kanału A i oddzielnie wszystkie diody z kanału B są połączone ze sobą równolegle w rodzaj przepływowych pal-czastych struktur, które wchodzą między siebie. W ten sposób osiągnięto pełne pokrycie całej powierzchni piksela przez diody z obydwu kanałów, co dało możliwość zbierania ładunku z tego samego obszaru zarówno przez diody z kanału A, jak i przez diody z kanału B. W połączeniu z naprzemiennym odczytem obu kanałów, opisanym w dalszej części, postosowanie takiej architektury zbierania ładunku doprowadziło do osiągnięcia postulowanej eliminacji czasu martwego w pracy detektora. Układ aktywnej części matrycy piksela jest regularny, kwadratowy. Jednak w celu zapewnienia wymaganego krótkiego czasu odczytu matryca została podzielona na 4 podmatryce, z których każda zawiera 3136 pikseli ulożonych w 28 kolumnach, z których każda zawiera 112 pikseli. Te cztery podmatryce są przewidziane do równoległego odczytu, przy wykorzystaniu oddzielnych kanałów analogowych z buforami wyjściowymi podłączonymi do oddzielnych pól kontaktowych z każdej podmatrycy. Adresowanie pikseli zachodzi jednocześnie we wszystkich czterech podmatrycach przez aktywowanie rząd za rządem odpowiednich kluczy, które są zlokalizowane w każdym pikselu, i klucze w kolumnach, które są zlokalizowane poza matrycą. Układem adresującym jest cyfrowy blok generujący sekwencję sygnałów kontrolnych, który jest wspólny dla wszystkich podmatryc. Architektura tego bloku bazuje na rejestrach przesuwnych. Jego funkcją jest zarządzanie fazami akumulacji ładunku i naprzemiennego odczytu z kanałów A i B w pikselu. Analogowe dane, taktowane na wyjściach analogowych, z kanału A i B są odczytywane naprzemiennie, tj. po odczytach wszystkich pikseli z kanału A w kolejnej fazie następuje odczyt wszystkich pikseli z kanału B. Odczyt z kanału A nazywany jest dalej w skrócie ramką A i analogicznie odczyt z kanału B nazywany jest ramką B. Obraz masek układu MIMOTERA z zaznaczonym podziałem na podmatryce jest pokazany na Rys. 8.1. Jest to widok od strony warstwy zawierającej podmatrycy. Architektura tego bloku bazuje na rejestrach przesuwnych. Jego funkcją jest zarządzanie fazami akumulacji ładunku i naprzemiennego odczytu z kanałów A i B w pikselu. Analogowe dane, taktowane na wyjściach analogowych, z kanału A i B są odczytywane naprzemiennie, tj. po odczytach wszystkich pikseli z kanału A w kolejnej fazie następuje odczyt wszystkich pikseli z kanału B. Odczyt z kanału A nazywany jest dalej w skrócie ramką A i analogicznie odczyt z kanału B nazywany jest ramką B. Obraz masek układu MIMOTERA z zaznaczonym podziałem na podmatryce jest pokazany na Rys. 8.1. Obraz masek pojedynczego piksela układu MIMOTERA jest pokazany na Rys. 8.2. Na rysunku tym widoczny jest międzypalczasty układ diod z ramki A i ramki B. Wymiary pojedynczej diody wynosi (5×5) µm². Układ wielu diod rozmieszczonych w odstępie 17 µm i połączonych ze sobą równolegle został wybrany jako korzystniejszy względem długich diod pokrywających całą powierzchnię piksela. Spodziewana korzyść to minimalizacja prądu upływu związanego z powierzchnią złącz p–n oraz możliwość wykorzystania przerw pomiędzy diodami na umieszczenie innych, koniecznych elementów układu elektronicznego piksela. Kanałowi A i B odpowiada 79 połączonych równolegle diod zbierających
ładunek. Do zaprojektowania diod zbierających ładunek w układzie MIMOTERA wykorzystałem wytyczne opracowane wcześniej dla zapewnienia jak najmniejszego ich prądu upływu. W tym celu cały obszar piksela został pokryty maską cienkiego tlenku active. Każda dioda otoczona jest przez pierścienie o silnym domieszkowaniu typu P, który jest widoczny na Rys. 8.2 w postaci żółtej otoczki wokół każdej z diod. Przestrzeń bezpośrednio nad studnią typu N nie zawiera żadnego dodatkowego domieszkowania poza tym, które jest konieczne do wytworzenia samej studni. Natomiast cała pozostała część piksela została pokryta silnym domieszkowaniem typu N. Ze względu na konieczność zapewnienia możliwości zebrania bardzo dużego ładunku zaprojektowano pojemności służące do powiększenia pojemności węzła zbierającego ładunek w pikselu. Pojemności te zostały wykonane w postaci sieci połączonych ze sobą tranzystorów NMOS z formalnie usuniętymi obszarami drenu i źródła z każdego tranzystora z osobna.

Elektrodą podłączoną do masy stała się cała powierzchnia piksela, która nie była zajęta przez diody zbierające ładunek ani przez elektroniczny układ odczytowy. Osiągnięto to poprzez pokrycie piksela maską definiującą obszar silnego domieszkowania typu N. Pojemności te są widoczne na Rys. 8.2 jako kwadraty o czerwonym odcieniu połączone ze sobą diagonalnie. W fazie projektowej podjęto decyzję o zaimplementowaniu możliwości wyboru spośród dwóch wartości pojemności gromadzącej ładunek w pikselu. Wyliczone wartości tych dwóch pojemności wynosiły odpowiednio 0,5 pF i 5 pF. Współczynnik konwersji ładunku na napięcie na wyjściu piksela szacowany w czasie wykonywania projektu wynosi około 250 nV/e⁻ dla mniejszej pojemności i odpowiednio dziesięciokrotnie mniej dla większej pojemności. Wyboru pomiędzy tymi dwoma pojemnościami dokonuje się poprzez aktywowanie klucza w pikselu. Dwie osobne części elektronicznych układów odczytowych dla ramki A i B są umiejscowione w części centralnej piksela, jak

Rys. 8.1 Architektura układu MIMOTERA (ostateczny układ po ściemnieniu i zamontowaniu na płycie obwodów drukowanych jest odbiciem lustrzanym pokazanego obrazu masek).
jest to pokazane na Rys. 8.2. Konieczność zapewnienia braku czasu martwego w działaniu piksela nie pozwoliła na implementację takiego odczytu piksela, który umożliwiałby wykorzystanie CDS do eliminacji szumu kT/C. Układ MIMOTERA zapalany jest z napięcia 5 V, co pozwala na maksymalny zakres sygnału na wyjściu piksela wynoszący około 2 V. Odczyt z każdej matrycy jest efektywnie wydłużony o dwie kolumny i dwa rzędy pikseli. Są to tzw. puste rzędy i puste kolumny niebędące fizycznymi pikselami, ale jedynie zawierają klucz przyłączający linię odczytową do napięcia referencyjnego w momencie adresacji. Taki schemat odczytu związany jest z odwołaniem się do tak zwanego odczytu z przygotowaniem, którego idea została wprowadzona w rozdziale 4.2 w dyskusji architektury układu MIMOSA V. Dodanie pustych odczytów jest konsekwencją, podobnie jak w układzie MIMOSA V, przyjęcia maksymalnie prostej, zajmującej też najmniejsze miejsca, budowy bloku generującego sygnały kontrolne. Puste rzędy i kolumny są dodane w celu umożliwienia przejścia do następnego rzędu po osiągnięciu ostatniego piksela w danym rzędzie. W układzie MIMOTERA kolejno każdy piksel jest aktywowany najpierw w przygotowaniu do odczytu. Załączane są klucze wyboru rzędu i kolumny z wyjątkiem klucza przyłączającego do wzmacniacza wyjściowego. Dziesię悲饱和 na dwa cykle zegara odczytowego przed wyпусzczeniem informacji z danego piksela na zewnętrz detektora. Dodanie dwóch pustych pikseli powoduje, że przy przejściu do nowego rzędu te puste piksele są odczytywane bez przygotowania, natomiast odczyt pierwszego fizycznego piksela poprzedzony jest czasem równym trwaniu dwóch cykli zegara. W czasie tym napięcie na liniach odczytnych dochodzi do stanu ustalonego. Pełny odczyt jednej ramki z układu MIMOTERA wymaga (122+2) × (28+2) =3720 cykli zegara odczytowego. Dla częstotliwości zegara wynoszącej 40 MHz prowadzi to do odczytu ramki w czasie 93 μs, co spełnia założenia projektowe.

Rys. 8.2 Obraz masek pojedynczego piksela układu MIMOTERA.
Najważniejsze informacje na temat konstrukcji układu MIMOTERA zostały zebrane w tabeli 8.2.

Tabela 8.2
Szczegółowe informacje na temat parametrów układu MIMOTERA

<table>
<thead>
<tr>
<th>Typ wafla i proces</th>
<th>6 cali, AMS 0,6 μm CMOS, twin–tub, p–epi, 14 μm grubości warstwy epitaksjalnej (ten sam proces – MIMOSA V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wymiar układu</td>
<td>(17350×19607) μm²</td>
</tr>
<tr>
<td>Wymiar matrycy</td>
<td>112×112 kwadratowych pikseli w układzie regularnym</td>
</tr>
<tr>
<td>Wymiar i struktura piksela</td>
<td>(153×153) μm², każdy piksel zawiera matrycę małych diod n–well/p–epi podłączonych naprzemiennie do jednego z dwóch kanałów odczytowych w każdym pikselu (nazywanych kanałami A i B)</td>
</tr>
<tr>
<td>Podział matrycy</td>
<td>4 podmatryce o wymiarach 28 (kolumn)×112 (rzędów)</td>
</tr>
<tr>
<td>Organizacja odczytu</td>
<td>równoległy odczyt 4 podmatryc; czas integracji sygnałów ładunkowych równy czasowi odczytu <100 μs; brak czasu martwego, przeplatane fazy całkowania i odczytu w połowie każdego piksela</td>
</tr>
</tbody>
</table>
| CVF i ENC dla pojemności akumulującej C=500 pF | CVF=−250nV/e⁻
ENC=−1000 e⁻ @ 280 e⁻ kT/C |
| Wymiar i ułożenie padów | (85×185) μm², pozycje padów zachowane z układu MIMOSA V dla umożliwienia użycia istniejącej infrastruktury testowej, w tym kart z mikroigłami |
| Inne | układ ścienniony do warstwy epitaksjalnej, dostęp do pól kontaktowych uzyskany od spodu układu po ściennieniu i wytwaniu dostępu do pól kontaktowych |

8.1.3. **Szczegółowy opis architektury układu MIMOTERA**

W przeciwieństwie do układu MIMOSA V, który był wciąż układem spełniającym rolę próbника dla oceny przydatności detektorów MAPS w szerokim spektrum zastosowań, układ MIMOTERA został zaprojektowany pod kątem wymagań konkretnej aplikacji. Szczegółowy schemat układu MIMOTERA jest pokazany na **Rys. 8.3**. Rysunek ten obejmuje fragment jednej podmatrycy. Dokładnie pokazana jest część układowa odpowiedzialna za multipleksację sygnałów z pikseli. Część ta znajduje się poza obszarem podmatrycy, na dole układu przebiegają trzy poziome linie odczytowe, które są przyłączane kolejno do
odczytu za pośrednictwem wtórników separujących, za którymi znajdują się klucze sterowane sygnałami MUX1, MUX2 i MUX3. Te trzy separujące wtórnice źródłowe z tranzystorami NMOS umieszczone przed multiplekserem zapewniają dodatkowy stopień buforowania poziomych linii odczytywych od bufora wyjściowego.

Kolejne kolumny pikseli są podłączone do tych linii odczytywych z krokiem 3. Każda kolumna posiada swoją część układu odczytowego, zbudowanego ze źródła prądowego, którego prąd jest zdefiniowany przez rozprowadzone napięcie bramki V_{bias}. Te źródła prądowe zasilają wtórnice źródłowe w pikselu kanału A lub B w zależności od stanu kluczy sterowanych sygnałami readA i readB. Prąd jest kierowany do wtórników w pikselach z danego, wybranego do odczytu rzędu po zamknięciu kluczy tranzystorowych, znajdujących się w źródłach tranzystorowych źródeł prądowych. Sygnał pochodzący z piksela jest buforowany przez wtórnik źródłowy, zbudowany na tranzystorze PMOS, przed jego podaniem na jedną z trzech linii odczytowych. Rolą tego drugiego wtórnika źródłowego jest separacja pionowych linii kolumn od poziomych linii odczytywych w celu minimalizacji całkowitej pojemności widzianej przez wtórnik z piksela.

Klucze, znajdujące się w obrębie wtórnika zbudowanego na tranzystorze PMOS, są używane do umożliwienia wstępnego ładowania linii odczytywych przed przyłączeniem sygnałów w celu zwiększenia szybkości odczytu. Pionowe linie kolumn połączone z wtórnikami NMOS w pikselach są ładowane do napięcia poniżej średniego poziomu na ich

Rys. 8.3 Szczegółowy schemat architektury układu MIMOTERA.
wyjściach, natomiast wyjścia wtórków PMOS są przyciągane do napięcia wyższego niż poziom średni na ich wyjściach. Zysk na prędkości działania polega na tym, że przed momentem włączenia wtórnika z tranzystorem NMOS napięcie na jego wyjściu, do którego jest dołączona duża pojemność, jest poniżej napięcia, które wtórnik ma powtórzyć. Wtedy, w momencie bezpośrednio po włączeniu tranzystora wtórnika działa on w początkowej fazie w obszarze liniowym, a więc prąd płynący przez ten tranzystor jest wirtualnie nieograniczony. Powoduje to szybkie podciągnięcie napięcia wyjściowego do wartości bardzo bliskiej wartości ostatecznej. W późniejszej fazie wzmocnienie wtórnik przechodzi do nasylenia i jego transkonduktancja zaczyna maleć, osiągając na koniec wielkość wynikającą z prędu źródłowego zasilającego wtórnik. Jednak końcowy przyrost napięcia jest niewielki i może być szybko osiągnięty przez wtórnik. Analogiczna sytuacja przyspieszenia odpowiadzi zachodząc za wtórnik z tranzystorem PMOS. Wyjście wtórnika z piksela jest przyciągane do napięcia V_{pull_down}, natomiast wyjście wtórnika PMOS bezpośrednio do zasilania dodatniego. Ilustracja odpowiedzi wtórnika z tranzystorem NMOS z piksela w momencie wybrania danej kolumny do odczytu jest pokazana na ilustracji 8.4. W momencie aktywacji sygnału wyboru kolumny napięcie na wyjściu wtórnika narasta od poziomu niskiego, narzuconego przez wstępne ustawienie do poziomu V_{pull_down}, do wartości odpowiadającej sygnałowi wyjściowemu z piksela. Po wycofaniu sygnału wyboru kolumny napięcie spada z powrotem do poziomu wstępnego.

Rys. 8.4 Ilustracja odpowiedzi wtórnika z tranzystorem NMOS z piksela w momencie wybrania danej kolumny do odczytu.

Kolumny pikseli podłączone są do jednej z trzech poziomych linii odczytowych z krokiem 3. Takie rozwiązanie związane jest z organizacją odczytu przygotowania. Skutkuje ono odczytem każdego piksela w trzecim cyklu zegara od rozpoczęcia przygotowania. W czasie dwóch pierwszych cykli zegara, wyjście piksela wybranego do odczytu jest podłączone do jednej z trzech odczytowych w wyniku zamknięcia kluczy i aktywacji wtórków źródłowych. W czasie trzeciego cyklu zegara analogowy multiplekser 3:1 dokonuje podłączenia jednej z linii odczytowych do bufora wyjściowego i próba sygnału z piksela jest wysyłana na zewnątrz detektora.

Ilustracja pracy układu odczytowego z przygotowaniem do odczytu w czasie dodatkowych cykli zegara jest pokazana na Rys. 8.5. Odczyt następuje w każdym trzecim cyklu zegara od rozpoczęcia przygotowania, tj. od momentu, kiedy napięcie na linii odczytowej

28 Napięcie linii V_{pull_down} powinno wynosić około kilkuset milivoltów i jego użycie jest konieczne wtedy, kiedy układ jest taktowany zegarem o dużej częstotliwości. Dla niższej częstotliwości zegara, np. tylko 10 MHz, ta linia może pozostać zupełnie niepodłączona.
rozpoczyna dochodzenie do wartości końcowej. Takie rozwiązanie pracy układu odczytowego pozwala na odczyt sygnałów analogowych przy użyciu układów o znacznie węższym paśmie częstotliwościowym, niż wynikałoby to bezpośrednio z częstotliwości zegara odczytowego. Dzięki takiemu podejściu można zaoszczędzić moc rozpraszaną w detektorze poprzez zmniejszenie prądu polaryzacji. W wyniku zawężenia pasma następuje również polepszenie charakterystyki szumowej.

Zmniejszenie prądu polaryzacji wtórników źródłowych skutkuje również poszerzeniem maksymalnego zakresu zmian sygnału przenoszonego przez wtórnik. Ilustracja pokazuje, że w pierwszym cyklu zegara rozpoczyna się przygotowanie piksela oznaczonego numerem 1, w następnym cyklu piksela 2 i kolejno 3. Odczyt pierwszego piksela następuje w drugim cyklu fazy przygotowania drugiego piksela i w pierwszym cyklu zegara fazy przygotowania piksela numer 3. Następnie sekwencja jest powtarzana.

Rys. 8.5 Ilustracja pracy układu odczytowego z przygotowaniem do odczytu w czasie dodatkowych cykli zegara.

Wzmocnienie napięciowe bufora wyjściowego może być ustalone na wartość 5 lub konfiguracja bufora wyjściowego może być zmieniona na wtórnik napięciowy za pomocą sygnału kontrolnego \(AT7 \), widocznego na **Rys. 8.3**. Bufor wyjściowy jest elementem układu MIMOTERA, który musi pozwalać na transmisję w pełnym zakresie zmienności sygnału. W każdym cyklu zegara odczytowego na wyjściu musi się pojawić nowy poziom analogowy. Bufor wyjściowy musi współpracować z obciążeniem pojemnościowym, na które składają się głównie pojemności pola kontaktowego, ścieżek na płycie obwodów drukowanych oraz pojemności wejściowe zewnętrznych wzmacniaczy. Z tego powodu bufor wyjściowy jest elementem skupiającym praktycznie całkowity pobór mocy detektora MIMOTERA równy około 50 mW/bufor.

W konstrukcji układu MIMOTERA zrezygnowano z zewnętrznych linii analogowych do ustawienia prądów referencyjnych dla wtórników źródłowych i bufora wyjściowego. W zamian prądy te są ustalane za pomocą prostego trzybitowego \(S0, S1, S2 \) wewnętrznego przetwornika cyfrowo-analogowego. Wybór prądów jest możliwy z zakresu od 88 \(\mu A \) do 150 \(\mu A \) dla wtórnika źródłowego w pikselu. Wybór prądu referencyjnego dokonywany jest za pomocą ustawienia bitów \(S0 \) i \(S1 \). Wartość ustawionych prądów może być sprawdzona na dwóch polach kontaktowych poprzez podłączenie mikroamperomierza pomiędzy polem kontaktowym a dodatnią końcówką źródła zasilającego. Mierzony prąd wynosi odpowiednio 50% i 60% prądu zasilającego wtórnik z tranzystorem PMOS na dole każdej kolumny i wtórnik z tranzystorem NMOS w każdym pikselu. W czasie normalnego działania układu pola te pozostają niepodłączone.

128
8.1.4. Szczegóły budowy piksela

Dokładny schemat układu odczytowego z piksela jest pokazany na Rys. 8.6. Układ elektroniczny piksela podzieleny jest na dwie części, tj. część nazywaną kanałem (ramką) A i część nazywaną kanałem (ramką) B. Struktura piksela różni się w stosunku do układu trójtransztorowego. Każdy piksel zawiera dwa identyczne układy odczytowe, pozwalające na niezależne akumulowanie sygnału i późniejszy jego odczyt. W porównaniu z układem trójtransztorowym dodano klucze próbujące z transzistory M_{2a}/M_{2b}, klucze wyboru pojemności z transzistory M_{4a}/M_{4b}, pojemności C_{A}^{reset}/C_{A}^{hold} i C_{B}^{reset}/C_{B}^{hold}, które zgodnie z indeksami przy nazwach tych elementów znajdują się odpowiednio w częściach układu dla kanału A i kanału B. Inną różnicą jest sposób przyłączenia transzystorów wtórników źródłowych do linii zasilania przez dodatkowy tranzystor o dużych rozmiarach, który jest sterowany przez sygnał POWER_ON. Jest to klucz, wspólny dla całej kolumny, który odciina zasilanie, kiedy dana kolumna nie jest zaadresowana do odczytu. Konieczność użycia klucza odcinającego zasilanie wynika z zastosowania mechanizmu przyspieszania odczytu poprzez ściąganie napięcia na wyjściu wtórnika do stanu niższego niż stan średni w czasie odczytu w momentach, kiedy dana kolumna nie jest wybrana.

![Schemat układu odczytowego z piksela.](image)

Rys. 8.6 Schemat układu odczytowego z piksela.

Polaryzacja w kierunku zaporowym, umożliwiająca kolejną akumulację ładunku generowanego przez promieniowanie, jest odzyskiwana poprzez aktywację transzystora resetu M_{1a}/M_{1b} po zakończeniu każdego odczytu odpowiednio z danego kanału. Sekwencjowania sygnałów kontrolnych, w tym generacja sygnału resetu, jest wbudowana w układ kontrolny wchodzący w skład układu MIMOTERA. Napięcie, do którego są resetowane diody zbierające ładunek, jest niezależne od napięcia zasilającego i jest ustalane z zewnątrz układu detektora. Opcja taka umożliwia pracę detektora, kiedy transzistor resetu znajduje się w obszarze liniowym cały czas podczas fazy resetu, jak również w trybie, kiedy przechodzi do nasycenia i napięcie na diodzie nie osiąga pełnego poziomu ustawionego na linii zewnętrznej. Te dwa tryby pracy rozróżniane są pod pojęciami odpowiednio twardego i miękkiego resetu i różnią się wielkością generowanego szumu kT/C [100], który w przypadku twardego resetu jest większy, ale dla twardego resetu pozostałość po poprzedniej ekspozycji jest równie mniejsza.
Ponieważ piksel zawiera faktycznie dwa rozdzielne kanały odczytowe, odczyt zgromadzonej informacji przez układ MIMOTERA odbywa się w sposób naprzemienny. Obydwa kanały odczytowe mają oddzielne pierwsze stopnie układu elektronicznego, które są naprzemiennie przyłączane do wyjścia. Każda operacja odczytu przechodzi w fazę resetu i następnie w fazę akumulacji sygnału. Operacje te zachodzą dla kanału A i kanału B w sposób uzupełniający się, to znaczy w czasie, kiedy pierwszy kanał akumuluje sygnał, drugi jest odczytywany i potem roli się zamieniają. Ilustracja opisanych zależności czasowych w działaniu układu MIMOTERA przy naprzemiennej akumulacji i odczytach z obydwu ramek jest pokazana na Rys. 8.7.

Rys. 8.7 Schemat zależności czasowych w działaniu układu MIMOTERA przy naprzemiennej akumulacji ładunku w ramce A i odczycie z ramki B.

8.2. Wyniki testów układu MIMOTERA

Układ MIMOTERA był przeznaczony dla konkretnej aplikacji w ramach projektu SU-CIMA, w którego realizację zaangażowana była większa, międzynarodowa grupa naukowa. Układ ten, ze względu na jego duże rozmiary oraz konieczność posiadania nienaruszonych wafli do przeprowadzenia operacji ścięgnowania, był wykonany w ramach produkcji inżynierskiej. Po otrzymaniu wafli z produkcji jeden z nich został użyty do przeprowadzenia testów, mających na celu wykazać poprawność wykonania projektu i wstępnie zbadać spełnienie założeń projektowych w zakresie parametrów elektrycznych i detekcyjnych. Następnym krokiem miało być przekazanie pozostałych wafli do wykonania na nich ścięgnowania, jeśli wiadomo było, że układ MIMOTERA działa poprawnie. Testy były wykonane na stacji pomiarowej pod mikroskopem z wykorzystaniem techniki ostrzowej i daly satysfakcjonujące rezultaty. Pozwoliło to na przeprowadzenie ścięgnowania na pozostałych wafelach. Wafle po ścięgnowaniu zostały pocięte na poszczególne kości i układy zostały rozsiane do współpracujących ze sobą instytucji na szczególne testy. Zakres tych testów był bardzo szeroki i przydatność układu MIMOTERA była sprawdzana również w zastosowaniach wychodzących poza zakres objęty programem SUCIMA.

W niniejszym rozdziale pokazany jest niewielki fragment wyników testów. Testy te pozwoliły zweryfikować poprawność wykonania projektu i wyznaczyć charakterystyki detektora. Otrzymanie tych pierwszych wyników było dużym sukcesem. Brałem aktywny udział w tych testach, analizując otrzymane wyniki eksperymentalne i konfrontując je z wcześniejszymi symulacjami. Ostatecznie dokonałem zebrania wyników potwierdzającego sukces projektu. Zaprezentowane wyniki zostały uzyskane przy użyciu systemu zbierania da-

130
nych, przygotowanym, podobnie jak dla układu MIMOSAV, przez grupę z Instytutu Fizyki Jądrowej im. H. Niewodniczańskiego w Krakowie. Należy dodać, że układ MIMOTERA jest eksploatowany do dnia dzisiejszego. Dostarcza nowych wyników w różnych eksperymentach i znajduje zastosowanie również poza swoim pierwotnym przeznaczeniem, np. w oryginalnej pracy bardzo dokładnego pomiaru rozmiarów Słońca i próby wyznaczenia korelacji zmian rozmiarów z aktywnością słoneczną [97].

8.2.1. Przybliżona kalibracja wzmocnienia konwersji ładunku na napięcie

Bezgłowna kalibracja współczynnika wzmocnienia CVF okazała się zadaniem bardzo trudnym dla układu MIMOTERA ze względu na brak referencyjnego źródła sygnału. Niskoenerygetyczne fotony promieniowania X nie mogły dać wystarczająco dużego sygnału, aby był on widoczny przy spodziewanej niskiej wartości współczynnika CVF. Z kolei, z powodu niewielkiej grubości warstwy aktywnej detektora wydajność detekcji dla fotonów o wysokiej energii była znikoma. Również metoda statystyczna, bazująca na zależności wariancji sygnału od jego wartości średniej dla procesu podlegającego statystyce Poissona, nie mogła być wykorzystana ze względu na spodziewany znaczący szum układu elektronicznego.

Z wymienionych powodów wykonano jedynie przybliżoną, używając źródła 241Am w roli emitera cząstek α. Źródło to emituje cząstki α o maksymalnej energii wynoszącej 5,64 MeV. Ze względu na przybliżony charakter kalibracji przyjęto wartość LET dla cząstki α o tej energii wynoszącą 1000 MeVcm$^{-2}$ [98]. Przy ułożeniu źródła w odległości około 1 cm od detektora daje to maksymalną energię deponowaną przez pojedynczą cząstkę α w detektorze wynoszącą 4,64 MeV. Maksymalne wielkości sygnałów obserwowanych na wyjściu układu MIMOTERA w konfiguracji z mniejszą wartością pojemności akumulującej ładunek w pikselu i wznacznaczy wyjściowym, ustawionym na pięciokrotne wzmocnienie napięciowe, wynosiły około 250 mV [99]. Wiedząc, że na drodze do wyjścia układu znajduje się kaskada trzech wtórników źródłowych, z których dwa są zbudowane na tranzystorach NMOS29, można wyznaczyć wzmocnienie napięciowe toru. Ze względu na to, że oszacowanie wzmocnienia konwersji dotyczy piskela, natomiast sygnały mierzone są na końcu toru wznacznającego, wyznaczono wzmocnienie, K_u^{-1}, od wyjścia układu MIMOTERA do węzła zbierającego ładunek, które może być wyrażone:

$$K_u^{-1} = 5^{-1} \times 0,84^{-1} \times 1^{-1} \times 0,84^{-1} = 0,3533,$$ \hspace{1cm} (8.1)

gdzie wzmocnienia wtórników NMOS wynoszą 0,84 ze względu na efekt podłoża, natomiast wzmocnienie wtórnika PMOS jest jednostkowe w wyniku zastosowania konfiguracji źródła połączonych z podłożem. Korzystając z zależności (8.1) i wiedząc, że ładunek wygenerowany przez uderzającą cząstkę α na detektor dzieli się zawsze po połowie między

29Wtórники źródłowe z tranzystorami NMOS, w przeciwieństwie do wtórników źródłowych na tranzystorach PMOS, nie mogą mieć źródeł połączonych z podłożem w technologii CMOS z dwoma komplementarnymi studiami, zatem ich wzmocnienie jest mniejsze od jedności.
kanał A i kanał B, wzmocnienie konwersji $CVF_{0.5\mu F}$ dla mniejszej pojemności akumulującej ładunku można wyliczyć w następujący sposób:

$$CVF_{0.5\mu F} = 250 \, mV \times 0,3533 \times 2 \times \frac{4.64 \, MeV}{3.6 \, eV} = 137 \, nV/e^-.$$

(8.2)

W ostatnim kroku, biorąc pod uwagę omówione w rozdziale 5 efekty związane z niepełnym zbieraniem ładunku, można wyliczyć przybliżoną wartość skorygowanego współczynnika $CVF_{0.5\mu F}$ przy założeniu podobnej wydajności zbierania ładunku, jaka została wyznaczona dla ścięzionej wersji układu MIMOSA V, tj. w najlepszym wypadku wynoszącym 65%, według następującego wyrażenia:

$$CVF_{0.5\mu F}^{kor} = CVF_{0.5\mu F} / 0.65 = 211 \, nV/e^-.$$

(8.3)

Zastrzegając, że wartość $CVF_{0.5\mu F}^{kor}$ wyliczona zależnością (8.3) jest przybliżona, można powiedzieć, że zmierzony przy użyciu cząstek α ze źródła ^{241}Am współczynnik CVF jest bardzo bliski wartości otrzymanej w fazie projektu układu MIMOTERA.

Niezależnie od dokonanej kalibracji laboratoryjnej układu MIMOTERA, konieczne jest wykonanie kalibracji w urządzeniu SLIM, która będzie wiążąca dla dostarczania właściwej informacji o monitorowanej wiązce. Kalibracja ta będzie uwzględniała wydajność generacji elektronów wtórnym przez wiązkę pierwotną przechodzącą przez folię aluminiową, pozwalając na powiązanie intensywności pierwotnej wiązki hadronowej z poziomami sygnałów mierzonymi przez układ MIMOTERA.

Wykonanie takiej kalibracji jest możliwe przez wstawienie detektora referencyjnego, np. jonizacyjnej komory gazowej (ang. ionization gas chamber), w światło wiązki pierwotnej i porównanie odpowiedzi układu MIMOTERA z sygnałami mierzonymi przez komorę jonizacyjną. Wykonanie tego typu kalibracji było zadaniem dla zespołu pracującego nad budową urządzenia SLIM po jego oddaniu do użytku.

8.2.2. Wyniki testów przy stymulacji laserem

 Jednym z wyznaczników, mówiących o detektorze, jest zmierzona wartość maksymalnego sygnału ładunkowego, jaki może przyjąć detektor bez wejścia w nasycenie, oraz linowość jego odpowiedzi. Do tych testów wykorzystano laser podczerwony o długości fali 1023 nm, który był przymocowany do manipulatora umożliwiającego jego ustawienie nad dowolnym pikselu układu MIMOTERA. Schemat ideowy umocowania lasera jest pokazany na Rys. 8.8a. Zamiast modulacji intensywności wiązki światła lasera zdecydowano się na kontrolę ilości generowanego ładunku w detektorze poprzez programowanie liczby krótkich jednonanosekundowych impulsów lasera w fazie akumulacji ładunku przez detektor, tak jak jest to pokazane na Rys. 8.8b.

Dane były analizowane jako sygnał zarejestrowany przez piksel centralny w zrekonstruowanym klastrze, a jako całkowity sygnał klastra zbudowanego z 5×5 pikseli. Na wykresie wykonanym dla piksela centralnego, który jest pokazany na Rys. 8.9a, widać, że nasy-
Cenie występuje dla około 50 impulsów lasera. Powyżej tej liczby piksel nie zwiększa swojej odpowiedzi. Korzystając ze zmierzonej wartości współczynnika CVF i wiedzy o relacji pomiędzy jednostką ADCU i napięciem na wyjściu układu MIMOTERA, można oszacować poziom nasycenia na około 5 \times 10^6 elektronów zebranego ładunku. Jest to spodziewana wartość poziomu nasycenia dla małej wartości pojemności akumulującej ładunk, pozwalającej na przyjęcie 1000 elektronów o energii 20 keV.

Rys. 8.8 Umocowanie lasera nad układem MIMOTERA a), przebieg czasowy faz resetu i odczytu dla kanału A z umiejscowieniem impulsów światła lasera b).

W przypadku zsumowanego sygnału z klastra złożonego z 5×5 pikseli, na wykresie pokazanym na Rys. 8.9b, który został przygotowany tak samo jak dla piksela centralnego, nie widać nasycenia nawet dla 120 impulsów lasera. Zaznacza się jedynie załamanie dla około 50 impulsów, ze względu na osiągnięcie nasycenia przez piksel centralny. Sytuacja taka jest wynikiem rozpyłu ładunku w detektorze, tj. podziałem ładunku pomiędzy sąsiednie piksele, z których każdy zbiera część ładunku bez dochodzenia do nasycenia.

Rys. 8.9 Wykres zależności sygnału dla piksela centralnego a) i dla klastra złożonego z 5×5 pikseli b) przy wymuszeniu laserem pracującym impulsowo, dającym światło o długości fali 1023 nm.

8.2.3. Wyniki testów na wiązce protonów z cyklotronu

W rozdziale tym opisane są wstępne wyniki testów, które były wykonane na wiązce protonów o energii 17 MeV pochodzących z cyklotronu w Joint Research Centre (JRC) w Isprze we Włoszech. Celem testów było sprawdzenie pracy układu MIMOTERA po zainstalowaniu w urządzeniu SLIM. Docelowy zakres testów jest bardzo obszerny. W tej pracy skupiono się jedynie na pokazaniu pierwszych wyników potwierdzających działanie JRC (Joint Research Centre) jest centrum badawczym finansowanym przez Unię Europejską, zlokalizowanym w Isprze we Włoszech.

133
i przydatność układu MIMOTERA w aplikacji pośredniego monitorowania wiązki w terapii hadronowej. Wiązka protonów została rozkoliwowana tak, aby pokryć powierzchnię na folii aluminiowej w urządzeniu SLIM wynoszącą około (15×15) mm². W odległości około 1 m przed urządzeniem umieszczono próżniową puszkę stałową, w której można było zamontować jeden z kilku przygotowanych kolimatorów. Pierwszym użytym kolimatorem była przesłona, która jest pokazana na Rys. 8.10. Jest to kolimator z jednym centralnie usytuowanym otworem o średnicy 5 mm, który posłużył do określenia współczynnika pomniejszenia przez przyspieszające–ogniskujące pole elektryczne w urządzeniu SLIM. Prąd wiązki protonów przed kolimatem był zmieniany w zakresie od kilku nanoamperów do 1 mA. Wysokie napięcie w SLIM na pierścieniu ogniskującym zostało ustalone na 17,95 kV, natomiast napięcie przyspieszające wynosiło 20 kV. Taki układ napięć pozwalało się spodziewać, zgodnie z wcześniejszymi symulacjami, wartości współczynnika skalowania obrazu pięciomilimetrowego otworu w kolimatorze na płaszczynie detektora MIMOTERA około cztery razy.

Rys. 8.10 Kolimator z jednym otworem używany do określenia współczynnika pomniejszenia obrazu w układzie monitorowania wiązki SLIM.

Odczyt układu MIMOTERA był taktowany zegarem o częstotliwości 10 MHz. Uzyskane wyniki obrazowania dla kanału A (Matrix A) i dla kanału B (Matrix B) są pokazane na Rys. 8.11. Pionowy pasek o szerokości dwóch pikseli nie powstał w wyniku niedziałającej części układu MIMOTERA, ale jest wynikiem nieusunięcia dwóch kolumn pustych odczytów z prezentacji wyników. Jak można zauważyć, uzyskano czyste obrazy kolimatora z jednym otworem umieszczonym w osi wiązki, zarejestrowane przez układ monitorowania wiązki SLIM z pracującym w nim detektorem MIMOTERA. Pomiar wielkości zarejestrowanej plamki przez detektor wykazał wartość współczynnika pomniejszenia wynoszącą 2,5. Różnica w stosunku do spodziewanej wartości 4 może wynikać albo z pewnej rozbieżności wiązki protonów przechodzącej przez kolimator, albo z niewłaściwej ogniskowania przez pole elektryczne w urządzeniu SLIM.

Drugim użytym kolimatem była przesłona z kilkoma rzędami otworów o średnicach od 1,5 mm do 6,5 mm, która jest pokazana na Rys. 8.12. Celem użycia tego kolimatora było sprawdzenie możliwości obrazowania drobnych szczegółów w rozkładzie profilej wiązki protonów (symulowanego przez otwory kolimatora) i stopnia deformaty obrazu, jaki może być wnoszony przez rozkład pola elektrycznego i konstrukcję urządzenia SLIM. Prąd wiązki protonów był ustalony na 20 nA, natomiast wysokie napięcia w urządzeniu SLIM były takie, jak w poprzednim eksperymentie. Do przeprowadzenia testów z drugim kolimatem wiązka została znacznie rozproszona, aby móc pokryć całą jego powierzchnię. Przykładowe obrazy kolimatora uzyskane przez detektor MIMOTERA dla obydwu kanałów są pokazane na Rys. 8.13.
Rys. 8.11 Uzyskane obrazy kolimatora z jednym otworem umiejscowionym w osi wiązki zarejestrowane przez układ monitorowania wiązki SLIM z pracującym w nim detektorem MIMOTERA (pionowe linie wynikające z dodatkowych pustych odczytów nie są usunięte).

Dla uwidocznienia szczegółów obraz dla kanału A został powiększony i przedstawia jedynie piksele od 60 do 80 w kierunku poziomym i pionowym. Na części rysunku odpowiadającej kanałowi B można rozpoznać geometryczną formę kolimatora. Wszystkie 6 rzędów otworów, łącznie z rzędem zawierającym najmniejsze otwory, zostało odwzorowanych przez detektor MIMOTERA. Obraz jest jednak przesunięty w kierunku lewej krawędzi detektora, obrócony o około 30° i nieznacznie zdeformowany.

Rys. 8.12 Obraz kolimatora z układem otworów o różnej średnicy i różnej odległości pomiędzy otworami uhodzonymi w jednej linii.

Istnienie tych efektów wskazuje na konieczność sprawdzenia rozkładu pola elektrycznego w urządzeniu SLIM i być może dokonania odpowiedniej korekty w jego konstrukcji albo weryfikacji wpływu pola wiązki pierwotnej na pole elektrostatyczne w urządzeniu SLIM i wprowadzenie odpowiedniej korekty dla tego efektu.
Przepracowane testy przy wykorzystaniu wiązki protonów z cyklotronu w JRC zakończyły się z sukcesem dla detektora MIMOTERA. Dały wyniki w postaci spektakularnych obrazów rozkładów wiązki pierwotnej, widzianych przez ten detektor. Pozwoliły one wykazać spełnienie wymagań projektowych przez ten detektor MAPS. Wyniki, przedstawione w tym rozdziale, są w istocie zwieńczeniem prac szczegółowo przedstawionych we wcześniejszych rozdziałach tej monografii. Te wcześniejsze prace przygotowały nie tylko podstawy dla wykonania projektu układu MIMOTERA, ale również przygotowały infrastrukturę i metodykę do przeprowadzenia testów.
9. Monolityczne detektory pikselowe w zaadaptowanych technologii CMOS

W przypadku detektorów budowanych na bazie materiałów półprzewodnikowych i działających na zasadzie generacji swobodnych nośników ładunku w materiale detektora najlepsze parametry uzyskuje się wtedy, gdy zbieranie ładunku uwolnionego w procesach oddziaływania promieniowania z materialem detektora zachodzi pod wpływem pola elektrycznego. Dla takiej konfiguracji ładunek dociera najwcześniej do elektrod zbierających, redukując do minimum ekspozycję na pulapki, centra rekombinacyjne i wolne nośniki przeciwnego znaku. Szybkie rozseparowanie nośników przeciwnego znaku i ich dryf pod wpływem pola elektrycznego są kluczem do wysokiej wydajności zbierania, a także do takiego sposobu pracy detektora, że rozruchy zbieranego ładunku pochodzącego z identycznych procesów, np. od fotonów promieniowania X o tych samych energiach (zaniedbując procesy takie jak rozpraszanie Comptona, itp.), są pomijalne. Dla niektórych aplikacji wykorzystujących wyższe energie fotonów konieczne jest użycie detektorów o grubościach znacznie większych niż grubości będące udziałem opisywanych wcześniej detektorów monolitycznych, budowanych przy wykorzystaniu technologii, w których całe podłoże jest jednolitym materiałem (ang. bulk CMOS).

Oczywiście jest, że wafl detektorowe o odpowiedniej rezystywności i konfiguracji dla polaryzacji z silnym polem elektrycznym w objętości aktywnej i wafl z układami odczytowymi mogą być wytworzone oddzielnie a następnie sklejone razem przy użyciu kulek metalu (ang. bump–bonding) lub przy użyciu innego procesu zapewniającego mechaniczne i elektryczne połączenie pomiędzy warstwami. Rozdzielenie detektora i układu odczytowego na oddzielne warstwy, które mogą być optymalizowane niezależnie, jest najlepszą drogą do zaimplementowania zaawansowanych funkcji przetwarzania sygnałów, jak również do wstępnej analizy danych bezpośrednio w każdym pikselu. Jednakże materiał na kulki stosowane w metodzie bump–bondingu, mające typowe wymiary z zakresu od kilkudziesięciu mikrometrów do ok. 200 μm, zawiera metale o wysokich liczbach atomowych, np. Pb, In, Sn. Dla niektórych aplikacji ten dodatkowy materiał jest nieakceptowalny ze względu na wprowadzane síle, niepożądane rozpraszanie promieniowania, które prowadzi np. do pogorszonej rozdzielczości przestrzennej. Dla detekcji promieniowania X dodatkowy materiał na połączenie warstw nie stanowi zasadniczo przeszkody, jednakże koszt, uzysk procesu i trudność, a czasem brak możliwości, uzyskania żądanego gęstości połączeń są mianowicie opcją hybrydowej.

31 Zbieranie ładunku w czasie znacznie krótszym od czasu życia nośników w detektorze pracującym w ekspozycji na zniszczenia radiacyjne, np. w aplikacjach w fizyce wysokich energii, gdzie czas życia nośników skraca się wraz z akumulacją dawki, stanowi o odporności systemu na zniszczenia radiacyjne.
Monolityczne detektory pikselowe, opisywane wcześniej w tej monografii, są alternatywą dla detektorów hybrydowych. Oferują znaczącą elastyczność w konstrukcji, a co za tym idzie, adaptację do wymagań aplikacji, np. poprzez ścieśnienie, które jest wykonywane celem polepszenia rozdzielczości przestrzennej. Oczywiście stopień dopuszczalnego ścieśnienia ograniczony jest w niektórych aplikacjach liczbą dostępnych nośników, które mogą być uwolnione w cienkim detektorze. Detektory te nie wymagają też odwodywania się do specjalizowanych procesów dla budowy warstwy detektora i późniejszego łączenia (ang. post–foundry processing). Dlatego że mogą być one projektowane jako typowe układy scalone, ich cena może być niewysoka. Jednakże, co przewija się w toku rozumowania zaprezentowanego we wcześniejszych rozdziałach, zakres przetwarzania sygnałów w tych detektorańskich jest bardzo ograniczony i ich użycie w niektórych aplikacjach okupione jest kompromisami. Detektory te są urządzeniami naturalnie łączącymi ładunki. Charakteryzują się niezwykle niskimi szumami, jednakże, w wyniku tego, że zbieranie ładunku nie zachodzi pod wpływem pola elektrycznego, ładunek zbierany podlega znaczącym fluktujom, nawet w przypadku identycznych procesów, np. z detekcji monochromatycznych fotonów X. Fluktuacje w zbieranym ładunku widoczne są jako dodatkowy szum, powodujący rozszerzanie rejestracji pików widmowych. Dlatego też możliwość zliczania poszczególnych zdarzeń interakcji promieniowania z materiałem detektora w podstawie całkowitego ładunku zebranego w okresie integracji daje rezultaty jedynie wtedy, gdy liczba przypadków nie przekracza kilku. Pozostałe to bez znaczenia w aplikacjach, w których intensywność wiązki jest tak duża, że oddziaływania promieniowania z materiałem detektora nakładają się, czyniąc niemożliwym traktowanie ich jako oddzielnych przypadków, nawet przez najszybsze układy elektroniki odczytowej. Jednakże, jeśli intensywność promieniowania jest taka, że sygnały pochodzące z poszczególnych zdarzeń są rozróżnialne, to niekwestionowaną metodą zwiększenia wyjściowego stosunku sygnału do szumu jest zliczanie poszczególnych impulsów. Taki sposób pracy pozostaje poza zasięgiem możliwości klasycznych detektorów MAPS. Dlatego w kolejnych etapach swojej pracy zająłem się monolitycznymi detektorami pikselowymi w znaadaptowanych technologii CMOS, co doprowadziło mnie do struktur pozwalających na pokonanie ograniczeń rozwiązań klasycznych.

9.1. Przykład zmodyfikowanej technologii na jednolitym podłożu półprzewodnikowym do budowy detektora MAPS

W klasycznym detektorze MAPS wszelka obecność studni typu N w obrębie obszaru czulego na promieniowanie skutkuje zbieraniem ładunku do tego obszaru. To zbieranie ładunku może być pasożytnicze, jeśli zachodzi do tych studyjnych obiektów, w których powinny być umieszczone tranzystory PMOS. Brak tranzystorów PMOS nie pozwała na implementację koniecznych układów do ciągłego przetwarzania sygnałów i ich rejestracji przez np. zliczanie zdarzeń, pomiar czasu pojawiania się sygnałów czy analizy ich amplitudy w detektoraach MAPS, tj. spektroskopię czasową i amplitudową. Wyjątkiem, na jaki należy zwrócić uwagę, jest odmiana detektorów MAPS realizowanych w zmodyfikowanych procesach, w którym obok istniejącej głębokiej studni typu N (ang. deep n–well) zaproponowano dodanie dodatkowej głębokiej studni typu P (ang. deep p–well) [101]. Głęboka studnia typu P jest osadzona w podłożu typu P w taki sposób, że „zamyka” ona od spodu zwykłą
studnię typu N. Przeznaczeniem głębokiej studni typu P jest umożliwienie stosowania tranzystorów PMOS w każdym pikselu. Jednocześnie pozostałe studnie typu N, nieposiadające od spodu głębokiej studni typu P, mogą być odpowiednio spolaryzowane i zapewniają zbieranie ładunku. Takie rozwiązanie nie ogranicza projektów odczytowych układów elektronicznych do układów, które mogą być skonstruowane jedynie z tranzystorami jednego typu, jak na to miejsce w klasycznych detektorkach MAPS, ale pozwala na wykorzystanie potencjału tranzystorów komplementarnych. Idea detektora MAPS na jednolitym podłożu, wykorzystującego zarówno zwykle, jak i głębokie studnie typu N i P, jest pokazana na Rys. 9.1. Rysunek odnosi się do technologii CMOS zmodyfikowanej według wymagań grupy zajmującej się detektorkami MAPS z Rutherford Appleton Laboratory (RAL) w Anglii. Przebieg procesu technologicznego (ang. process flow) prowadzi do wytworzenia poczwórnych studni (ang. quadruple wells), z których głęboka studnia typu P służy do wytworzenia bariery potencjału uniemożliwiającej nośnikom (elektronom) dotarcie do zwyklej studni typu N, w której są umieszczone tranzystory PMOS. Natomiast głęboka studnia typu N służy temu, aby wspomóc zbieranie nośników w przeznaczonym dla tego procesu implantacji zwyklej studni typu N, tworzącym z podłożem spolaryzowane zaporowo złącze. Z reguły wprowadzenie jakichkolwiek zmian do istniejącej konfiguracji oraz wynikającej z niej konfiguracji komplementarnej jest kosztowne i firma posiadająca licencję na ten proces technologiczny, zgodnie z przepisami praw patentowym, nie może wprowadzać takich zmian do procesu, z wyjątkiem przypadku, gdy omawiana zmiana jest niezbędna dla rozwoju detektora, który byłby w przyszłości używany w jakimś specjalnym celu. Zmiana ta jest przewidzień w sposób, który pozwoli na optymalizację detektora w celu zdobycia osiąganych wyników w konfiguracjach niezależnych od lokalizacji detektora w przestrzeni. Przykładowo, w przypadku detektora MAPS, który jest przeznaczony do wykrywania promieniowania gamma, istnieje możliwość wprowadzenia dodatkowej kompenzacji przepływu w detektorze, która pozwala na optymalizację detektora w celu zdobycia osiąganych wyników w konfiguracjach niezależnych od lokalizacji detektora w przestrzeni.
9.2. Idea monolitycznego detektora pikselowego w zaadaptowanej submikronowej technologii Silicon–on–Insulator CMOS

Jedyna w swoim rodzaju sposobność konstrukcji monolitycznego połączenia detektora z zaawansowanym elektronicznym układem odczytowym nadarza się dzięki sięgnięciu po technologię typu Silicon–on–Insulator (SOI). Detektor może być spolaryzowany do pracy jako dioda w pełnym lub częściowym zubożeniu, a układ odczytowy, leżący w warstwie nad detektorom, może przetwarzać sygnały równolegle w każdym pikselu. Taki temat był podejmowany już w przeszłości w kilku ośrodkach, np. [104] i [105], jednak ograniczone możliwości technologiczne lub brak odpowiednich nakładów nie doprowadziły do szerzej zrealizowanych przedsięwzięć. Należy zwrócić uwagę na fakt, że aby móc zbudować detektor w procesie technologicznym wywodzącym się ze standardowego procesu SOI, stosowanego do wytwarzania zwykłych układów elektronicznych, konieczne jest uzupełnienie tego wyjściowego procesu technologicznego o dodatkowe kroki. Proces powinien zostać wzbogacony o kroki służące do wytwarzania kontaktów w postaci przelotek przez warstwę tlenku zagrzebanego (ang. buried oxide – BOX) i dodanie kroków domieszkowania. Kolejność i przepis domieszkowania w postaci implantacji akceptorowych i donoro-cząstec domieszkowania zależy od typu podłoży. Celem domieszkowania jest uzyskanie złączy p–n w wysokorezystywnym materiale podłoża i wytworzenie kontaktów elektrycznych do przekazywania sygnałów do elektronicznych kanałów odczytowych. Stosowny proces SOI został rozwinąty w ramach grupy SOIPIX [106] pod przewodnictwem japońskiego laboratorium KEK (High Energy Accelerator Research Organization) wspólnie z OKI Semiconductor Co. Ltd.32. Proces, w którym pierwsza produkcja układów detektorowych miała miejsce w 2005 roku, bazuje na waflach o wysokorezystywnym podłożu nośnym (ang. handle layer) typu N, których rezystancja jest przedziału od 1 kΩcm, odpowiednio dla podłoża uzyskiwanego metodą Czochralskiego, do 7 kΩcm, dla podłoża osiąganego metodą topienia strefowego (ang. float zone).

Bazowym procesem jest w pełni zubożona (ang. fully depleted) technologia CMOS SOI o rozdzielczości litografii pozwalającej na minimalną długość bramki 0,2 μm. Grubość warstwy tlenku zagrzebanego wynosi 200 nm, a średnica kontaktów zapewniających połączenia elektryczne przez tę warstwę jest mniejsza od 0,5 μm [107]. Ogólny widok detektora MAPS w zaadaptowanej technologii SOI na wysokorezystywnym podłożu krzemowym jest pokazany na Rys. 9.2. Złącza półprzewodnikowe znajdują się po dolnej stronie warstwy tlenku zagrzebanego, a naprzeciwko cząsteczki zapobiegają objętości aktywnej detektora jest przykładowe między spodnią cienką warstwą aluminium o grubości około 200 nm a elektronikę (dokładniej – wejściami wzmacniającymi, których stałopadowe punkty pracy są usta-lone). Warstwa aluminium jest nanoszona metodą napylania (ang. sputtering) i tworzy złącze omowe do podłoża. Detektor można polaryzować do pracy również przez kontakt odwodniczany z układem odczytowym anodowo i złożone na górze pod warstwą tlenku zagrzebanego, jednak w tym przypadku wytrawione pole elektryczne może nie być wystarczająco jednorodne. Układy elektroniczne przetwarzające sygnały ładunkowe z detektora są wytworzonych w cienkiej, typowo

32 Obecnie działalność OKI Semiconductor Co. Ltd. w zakresie produkcji układów scalonych została przejęta po zmianach strukturalnych i własnościowych przez LAPIS Semiconductor Miyagi Co. Ltd.
liczącej około 40 nm grubości, warstwie krzemu nad tlenkiem zagrzebanym. Przyłożone napięcie polaryzacji wstecznej powinno być stopniowo rozłożone w objętości aktywnej detektora pomiędzy obszarami o silnym domieszkowaniu typu P⁺ a spodnią elektrodą aluminium. Jednakże ze względu na skończone wymiary obszarów definujących złącza diod w strukturze wytwarza się boczny gradient potencjału pomiędzy wyspami P⁺ w warstwie przypowierzchniowej bezpośrednio pod tlenkiem zagrzebanym. Istnienie tego gradientu potencjału jest wysoce niepożądana, gdyż prowadzi do przesunięć napięć progowych tranzystorów, spowodowanych tym, że podłoże pod warstwą tlenku zagrzebanego może być widziane jako dodatkowa elektroda wpływająca na przewodzenie tranzystorów (ang. back–gate electrode).

W pierwszym podejściu przyjęto, że problem nie jest tak istotny i zachowanie odpowiednio małych odległości pomiędzy sąsiednimi wyspami P⁺ oraz stosowanie jak najmniejszych napięć do polaryzacji detektora uznane zostało za wystarczającą dla minimalizacji wpływu pracującego detektora na elektronikę odczytową. Należy zaznaczyć, że napięcie tak niskie jak 10 V jest wystarczające do zużycia warstwy krzemu o przewodnictwie typu N o grubości około 50 μm przy jego rezystywności 1 kΩcm. Detektory o takiej grubości obszaru aktywnego spełniają wymagania aplikacji w fizyce wysokich energii, w mikroskopii elektronowej i detekcji mikrocząsteczek promieniowania X o energiach z zakresu do 5 keV. Zatem już z tego przykładu można wywnioskować, że detektor MAPS realizowany w technologii SOI wykazuje znaczące zalety, pod względem właściwości detekcyjnych i możliwości przetwarzania sygnałów w stosunku do klasycznego detektora MAPS na jednorodnym podłożu polprzewodnikowym.

W pierwszym prototypie detektora MAPS w technologii SOI, który zaprojektowaliśmy w 2006 r., skupiliśmy się na zapewnieniu równomiernej rozkładu implantów P⁺, licząc w ten sposób na redukcję zjawiska modulacji przewodzenia tranzystorów przez warstwę tlenku zagrzebanego. W układzie tym odległość między sąsiednimi implantami diodowymi wynosiła zaledwie 13 μm, tak żeby nawet przy pełnym zużyciu detektora potencjał w punkcie pomiędzy diodami nie różnił się więcej niż o kilka woltów od tego występującego w punkcie bezpośrednio przy diodach. Częściowy przekrój przez wafel pokazujący obszar jednego piksela, układy peryferyjne oraz pierścienie otaczające (ang. guard–rings) zaprezentowane są na Rys. 9.3. Matryca pikseli rozciągana się do prawej strony rysunku,
natomiast pola kontaktowe do połączeń zewnętrznych znajdują się poza pierścieniami za-
bezpieczającymi. W każdym pikselu znajduje się dziewięć równolegle spiętych implantów P^+. Wspólny węzeł podłączony jest na wejściu jednego wzmacniacza ładowanego. Z kolei sygnał ze wzmacniacza jest formowany i filtrowany w układzie kształtującym, a następnie jest poddawany dyskryminacji progowej i wynik, jeśli próg zostaje przekroczyony, jest rejestr
owany w liczniku.

Rys. 9.3 Przekrój pokazujący rozłożenie piksela, elektronicznych układów peryferyjnych, implantów detektoru i pierścieni ekranujących w układzie MAMBO zaprojektowanym w 2006 r.

Projektowana rodzina detektorów o takiej architekturze została nazwana „MAMBO”. Jest to akronim od angielskiego rozwinęcia Monolithic Active Pixel Matrix with Binary COntrinters. Po przeprowadzeniu testów pierwszego układu MAMBO okazało się, że zwarty rozkład implantów P^+ nie jest wystarczający dla zapewnienia niskoszumowej pracy detek
tora. Zauważono, że układ elektroniczny nie jest w żaden sposób ekranowany i wszelka aktywność w warstwie zawierającej układy elektroniczne z powodu jej bliskości do detek
tora powoduje zakłócenia w pracy układu. Szczególnie wrażliwa jest część analogowa, dla której sprzężenia pojemnościowe mogą prowadzić do niestabilności. Ze względu na wielo-
ścierkowość tych sprzężeń są one ogólnie trudne do analizy. Celem rozwiązania problemu sprzężenia pomiędzy warstwą detektorową a warstwą zawierającą układy elektroniczne zaproponowaliśmy w postaci zagnie
dżonych studni (ang. nested wells) typu P i N. Wytworzenie tych studni pod warstwą tlenku zagrzebanego osiąga się w proce
sie kilkukrotniej implantacji, używając odpowiednio dobranych różnych energii jonów. Rozwiązanie to, opisane szerzej w dalszej części bieżącego rozdziału, zostało zaadaptowa
tne przez producenta i stało się częścią ulepszonego procesu, który został oddany później do stosowania przez wszystkich członków kolaboracji SOIPIX.

9.3. Szczegółowy opis procesu SOI użytego do wytwarzania układów MAMBO

Kluczowym elementem procesu jest użycie wysokorezystywnych, podłożowych wafli krzemowych z cienką warstwą niskorezystywnego materiału, która oddzielona jest od pod-
łóża izolującą warstwą SiO₂. Wafle do budowy detektorów pikselowych otrzymuje się w wyniku zastosowania technologii UNIBOND [33] i są one dostarczane przez firmę specjalizującą się w wytwarzaniu tego typu podłoży.

Technologia UNIBOND bazuje na dwóch głównych krokach technologicznych, mianowicie na implantacji Smart–Cut i łączności dwóch wafli z utlenionymi powierzchniami przez wytwarzające się wiązania hydrofilowe. W implantacji Smart–Cut wprowadza się jony wodoru na niewielką głębokość. Powoduje to takie osłabienie struktury, że po połączeniu dwóch wafli dochodzi pod wpływem podwyższonej temperatury do precyzyjnego oddzielenia warstw w taki sposób, że na grubym waflu podłożowym pozostaje bardzo cienka warstwa niskorezystywnego krzemu, w której później wytwarza się tranzystory i inne elementy układów elektronicznych [108]. Z zasady podłoża używane przez kolaborację SOIPIX, charakteryzują się typem przewodnictwa N [34]. Początkowa grubość wafla wynosi około 700 μm, jednak może on być ścieniony nawet do zaledwie 50 μm i jego spodnia część może być na końcu procesu poddana implantacji i wygrzewaniu laserowemu (ang. laser annealing) celem wbudowania warstwy umożliwiającej wsteczną polaryzację i kontakt omowy spodniej elektrody polaryzującej. Technologia wytwarzania tranzystorów charakteryzuje się minimalną długością bramki wynoszącą 0,20 μm. Jest to pełne, komercyjna technologia wytwarzania układów scalonych z jedną warstwą polikrzemu, pięcioma warstwami metalu, kondensatorami typu MiM (ang. metal–insulator–metal) o pojemności na jednostkę powierzchni wynoszącej 1,5 fF/μm². Ze względu na bardzo cienką warstwę krzemu wynoszącą zaledwie około 40 nm, w której wytwarzane są tranzystory, podłoże tranzystorów jest w pełni zubożone nawet przy niewielkim napięciu przyłożonym na bramkę. Prąd upływu tranzystorów w stanie wyłączonym jest niewielki. Każdy tranzystor jest wytwarzany w odizolowanej wypłaszczonej krzemowej. Możliwe jest więc użycie konfiguracji tranzystorów z tzw. pływającym podłożem. Konfiguracja taka jest użyteczna dla zwiększenia stopnia upakowania szczególnie w przypadku układów cyfrowych. Również można korzystać z łączenia podłoża ze źródłem tranzystora lub oddzielnym napięciem zasilania, jeśli przeznaczeniem jest układ analogowy. Jednak przez to, że podłoże jest cienkie i łatwo dochodzi do jego zubożenia, kontakt do podłoża jest dużo mniej wydajny niż w przypadku technologii na podłożu jednolitym. Implantacje o wysokiej koncentracji domieszek N⁺ i P⁺ wytwarza się dla uzyskania kontaktów omowych dla elektrod detektora, z których sygnały ładunkowe przesyłane są przez wypełnione wolframem przelotki przechodzące przez warstwę tlenku zagrzebanego do warstwy zawierającej układ elektroniczny.

Niedawno wprowadzone do procesu implantacje studni BPW (ang. buried p–well) oraz zagnieźdzone studnie BPW i BNW (ang. buried p–well and n–well) służą optymalizacji polaryzacji detektora i zapewnieniu ekranowania. Szczegółowe informacje na temat procesu technologicznego SOI, zaadaptowanego do budowy detektorów MAPS, są zebrane w tabl. 9.1. Zaprezentowany proces technologiczny, oparty na komercyjnym procesie CMOS, pozwala na budowę detektora zintegrowanego monolitycznie ze skalowalną strukturą elektroniczną układu odczytowego. Skutkuje to niskim nakładem materiału, prostotą rozwiązania, wysokim uzyskiem i niezawodnością połączenia przy wysokiej gęstości upakowania oraz daje możliwości implementacji zaawansowanych funkcji równoległego wytwarzania sygnałów.

33 Technologia UNIBOND jest zastrzeżonym procesem firmy SOITEC z Francji.
34 Podłoża typu P mogą być również wykorzystywane pod warunkiem odpowiedniego odwrócenia typów implantacji dla elektrod detektora.
Tabela 9.1
Szczegółowe informacje na temat procesu OKI SOI 0,20 μm (OKI Semiconductor Co. Ltd.) używany przez kolaborację SOIPIX

<table>
<thead>
<tr>
<th>Typ wafla i jego parametry</th>
<th>6 cali; górny wafel: Cz (Czochralski), ~18 Ωcm, typ P, grubość ok. 40 nm; wafel podłożowy: Cz, ρ > 1k Ωcm, typ N (niegarantowany) SOITEC, lub FZ (float zone), 1 kΩcm < ρ < 7 kΩcm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grubość całkowita wafla: wyjściowa i po ścienieniu</td>
<td>Początkowa grubość 720 μm, ścieniany typowo do około 300 μm, wafel (pokryty od spodu warstwą aluminium o grubości 200 nm)</td>
</tr>
<tr>
<td>Typ procesu technologicznego, technologia</td>
<td>technologia SOI 0,20 μm w pełni zubożona o niskim prądzie upływu, 1 warstwa polikrzemu, 5 warstw metalu, kondensatory typu MiM (ang. metal–insulator–metal) 1,5 F/μm², tranzystory o niskim nominalnym i I/O napięciu progowym oraz zubożone tranzystory NMOs (DMOS), grubość tlenku podbramkowego 4,5 nm, nominalne napięcie zasilania 1,8 V (3,3 V dla I/O)</td>
</tr>
<tr>
<td>Grubość warstwy tlenku zagrzebanego BOX oraz dostępne kroki technologiczne na spodniej stronie detektora</td>
<td>200 nm; mechaniczne ścieranie, chemiczne trawienie, implantacja jonów od spodniej strony detektora, wygrzewanie laserowe i napylanie warstwy aluminium</td>
</tr>
<tr>
<td>Wykonanie implantów n+/p+ w waflu podłożowym</td>
<td>jednoczesne z utworzeniem obszarów drenu i źróła tranzystorów oraz implantacja jonów przez warstwę tlenku zagrzebanego</td>
</tr>
<tr>
<td>Elementy aktywne</td>
<td>NMOS/PMOS (z płynącym podłożem lub połączonym ze źródłem lub oddzielnym napięciem zasilania)</td>
</tr>
<tr>
<td>Prąd upływu</td>
<td>tranzystor wyłączony I_{off} <100 pA/μm</td>
</tr>
<tr>
<td>Uzupełnienia procesu</td>
<td>implantacje N⁺ i P⁺ dla kontaktów omowych w detektorze, implantacja BPW oraz zagnieżdzone studnie BPW i BNW dla optymalizacji struktury detektora</td>
</tr>
</tbody>
</table>

9.4. Projekty układów MAMBO – prototypowe detektory SOI

Korzystając z możliwości członkostwa w kolaboracji SOIPIX, najpierw jako członek grupy mikroelektronicznej w Fermilabie, a później kierując tą grupą, prowadziłem prace nad monolitycznymi detektorami pikselowymi realizowanymi w technologii CMOS SOI. W wyniku tych prac zostało zaprojektowanych, wykonanych i przetestowanych kilka proto-
typów. Zadania były ukierunkowane na wypracowanie architektury detektora pozwalającej na pełne wykorzystanie możliwości technologii SOI oraz na dokładne poznanie ograniczeń i zaproponowanie udoskonaleń, które mogłyby być zaimplementowane przez dostawcę procesu do zastosowania przez wszystkich członków colaboracji.

Na wstępie moich rozważań uznałem, że zwykle integrowanie ładunku użyczające struktury trzech tranzystorów, co jest typowe dla detektorów MAPS lub będące takiej struktury detektorów ekiwivalentne, nie stanowi wystarczającego postępu w stosunku do klasycznych detektorów MAPS. Mając możliwość współpracy z przemysłem i opisaną później w tej pracy możliwość modyfikacji procesu, skupiłem się na rozwiązaniach bardziej zaawansowanych, takich jak ciągłe przetwarzanie sygnału i zliczanie w każdym pikselu poszczególnych zdarzeń interakcji promieniowania z materiałem detektora. Rozwiązania takie są podobne do spotykanych w detektorach hybrydowych, wśród których można wymienić dwa najbardziej znane i zaawansowane systemy, mianowicie Medipix35 i Pilatus36 [109] [110]. Należy zaznaczyć, że zliczanie impulsów elektrycznych powstających z poszczególnych zdarzeń interakcji promieniowania z detektorem prowadzi do wirtualnie bezszumowej rejestracji obrazu. Każdy kwant promieniowania skutkuje jednym zliczeniem. Taka idealna czystość rejestracji przypadków promieniowania jest dążeniem o fundamentalnym znaczeniu, jeśli przedmiotem zastosowania detektora jest bezpośrednie obrazowanie przy użyciu promieniowania, np. w rejestracji obrazów dyfrakcyjnych, lub wyznaczenie zależności pochodnych, jak ma to miejsce np. w technikach spektroskopii korelowanej.

Projekty wykonanych prototypów detektorów SOI dzielili wspólną koncepcję matrycy piksele, której sztka jest przedstawiony na Rys. 9.4. W koncepcji tej każdy piksel jest niezaletnoujną jednostką rejestrującą w sposób ciągły przypadki pochodzące od promieniowania. Sercem układu jest jednostka analogowa wzmacniaca, która otoczona jest przez część cyfrową, na którą składa się głównie licznik. Do odczytu wyników piksele łączone są w łańcuch (ang. daisy chain) i informacja kierowana jest do wyjścia, „przechodząc” sekwencyjnie przez wszystkie piksele. Na Rys. 9.5 pokazany jest obraz masek pełnego układu MAMBO I, który jest pierwszym wykonanym prototypem. Układ ten ma niewielkie rozmiary (2,5×2,5 mm²). W pikselu zawarty jest blok analogowy z dyskryminatorem i licznik pozwalający na rejestrację kolejnych zdarzeń. Każdy z liczników może być przeokonowany do postaci rejestru przesusneego i powstałe rejestry przesusne z każdego piksela mogą być połączone razem, pozwalając na szeregową transmisję danych z detektora. Układy MAMBO I37 i II posiadały piksele odpowiednio (26×26) μm² i (47×47) μm². Różnica w wielkościach piksele wynikała głównie z rozmiarszenia większej liczby równoległe połączonych diod pomiędzy pierwszą i kolejną wersją układu MAMBO celem analizy zjawiska sprzężeń pomiędzy elektroniką i materiałem detektora.

35 Medipix jest systemem detektorowym powstałym w CERN-ie (European Organization for Nuclear Research – Centre Européen pour la Recherche Nucléaire) w Genewie w Szwajcarii.

36 Pilatus jest systemem detektorowym powstałym w PSI (Paul Scherrer Institute) w Zurichu w Szwajcarii.

37 MAMBO I był układem wykonanym w krótko dostępnej wersji procesu technologicznego o minimalnej długości bramki 0,15 μm – procen ten posiadał niedokładne modele tranzystorów, jak również tranzistory posiadały charakterystyki utrudniające projekt układów analogowych ze względu na duże i nierównomierne nachylenie charakterystyk przejściowych w zakresie nasycenia (ang. kink effect).
Rys. 9.4 Szkic ideowy matrycy piksli w układzie detektora do obrazowania.

Rys. 9.5 Rysunek masek pełnego układu MAMBO I.

Wygląd masek pojedynczego piksela z układu MAMBO I jest przedstawiony na Rys. 9.6. Jest to przykład projektu piksela z kilkoma równolegle połączonymi diodami do zbierania ładunku w obrębie każdego piksela, co ma służyć zmniejszeniu różnic potencjału pod warstwą tlenku zagrzebanego. Przedwzmacniacz, filtr kształtujący i dyskryminator umieszczone są centralnie w pikselu. Licznik zbudowany na bazie różnicowych przerzutników typu D (DDFF) otacza część analogową. Udoskonalenie procesu technologicznego, polegające na dodaniu głębokiej studni P oraz zagnieźdzonych głębokich studni P i N, a także rozbudowa
topologii układu piksela, spowodowały znaczące zmiany w projektach masek pojedynczego piksela dla kolejnych wersji układów MAMBO38.

Rys. 9.6 Szkie masek pojedynczego piksela z układu MAMBO I.

Rysunek masek pojedynczego piksela z układu MAMBO IV z jednym podłączeniem do studni P zbierającej ładunek i z wieloma połączeniami do zagnieźdzonej w niej studni N ekranującej elektronikę od detektoru jest dla porównania przedstawiony na Rys. 9.7.

9.4.1. Szczegóły projektu pojedynczego piksela

Trudność budowy stopni wzmacniających i przetwarzających sygnały, zasadniczo bazujących na klasycznych rozwiązaniach układowych, polega na minimalizacji rozpraszanej mocy i zajmowanej powierzchni przy jednoczesnym wymogu dostarczenia pełnej funkcjonalności. Opis pełnego kanału elektronicznego piksela jest przedstawiony początkowo od najwcześniejszego układu MAMBO I. W kolejnych realizacjach struktury układowe były rozbudowywane przy zachowaniu zasadniczej topologii. Część analogowa piksela zbudowana jest na bazie dwustopniowego układu wzmacniająco–filtrującego o charakterystyce pseudogaussowskiej typu CR–RC2 o działaniu ciągłym z następującym po nim jednoprowadkowym dyskryminatorem39 i 12-bitowym licznikiem binarnym (ang. ripple counter). Poglądowy schemat blokowy układu elektronicznego, zawartego w pojedynczym pikselu układów MAMBO, jest pokazany na Rys. 9.8. Pierwszy stopień wzmacniaca jest pojemnościowo sprzężony z drugim stopniem i daje dziesięciokrotne wzmacnienie ładunkowe wynikające ze stosunku 1:10 pojemności całkującej, C_h, i sprzęgającej, C_p, z drugim stop-

38 Wersja MAMBO III przewidziana była na eksplorację technologii trójwymiarowej integracji, oferowaną przez firmę T-micro z Tohoku w Japonii, za pośrednictwem kolaboracji SOIPIX.

39 W późniejszych wersjach układów MAMBO wprowadzono dyskryminator okienkowy z dwoma poziomami wyzwalania.
niem. Pierwszy stopień wzmacniacza zawiera transliniarny układ wymiany bieguna na zero (ang. pole–zero cancellation) [111]. Rolą układu wymiany bieguna na zero jest usunięcie przerzutu impulsu odpowiedzi czasowej przez linię bazową [112].

Rys. 9.7 Szkie masek pojedynczego piksela z późniejszego układu MAMBO IV.

Rys. 9.8 Schemat blokowy układu elektronicznego zawartego w pojedynczym pikselu (układ przedwzmacniacza ładunkowego, filtr kształtujący, dyskryminator i licznik binarny).

W procesie dostępne są trzy typy tranzystorów do zastosowania w rdzeniu (ang. core) układu, tj. tranzystory o wysokim i niskim napięciu progowym oraz zubożone tranzystory. W tych ostatnich inwersja kanału osiągana jest przy napięciu pomiędzy bramką a źródłem mniejszym niż 0 V, zatem można ich używać jako nieuziemione pojemności. Projekty układów MAMBO zostały przeprowadzone w taki sposób, że wykorzystano tranzystory każdego typu w odpowiednich częściach układowych. Tranzystory przedstawione na Rys. 9.8 i na następnych schematach ideowych, pokazane z pominięciem połączenia do podłoża, są tranzystorami użyтыmi w konfiguracji z płynącym podłożem.

Schemat pierwszego stopnia wzmacniacza jest pokazany na Rys. 9.9. Projekt układu bazuje na prostym stopniu wzmacniającym typu wspólne źródło z tranzystorem wejściowym M_{op}, polaryzowanym prądem poniżej 1 μA. W układach MAMBO I i II pierwszy stopień wzmacniacza nie był skonfigurowany w postaci kaskady. Rozwiązanie wzmacniacza o układzie będącym kombinacją regulowanej i teleskopowej kaskady zostało zastosowane w późniejszych projektach, zatem nie zostało ono uwidocznione na Rys. 9.9, a jedynie zostało poddane dyskusji w dalszej części bieżącego rozdziału. Pasmo częstotliwościowe układu wspólnego źródła jest ograniczone przez obciążenie pojemnością zrealizowaną na tranzystorze M_{ld}. W ten sposób jeden biegun transmisji jest ulokowany w przedwzmocniaczu. Wstępny punkt pracy przedwzmocniacza jest ustalony przez niewielki, w zakresie kilkudziestu pikamperów, prąd generowany przez źródło prądowe na tranzystorze M_{35}. Prąd ten jest pochłaniany w ścieżce stałooprądowej uformowanej przez układ kompensacji biegunu i zera. Ładunek pochodzący z detektora jest integrowany na pojemności sprzężenia zwrotnego, MC_p, której wartość wynosi około 5 fF. Dziesięciokrotne wzmnoczenie sygnału wynika z zastosowania pojemności, MC_p, sprzęgającej pomiędzy pierwszym a drugim stopniem wzmacniacza, która jest dziesięciokrotnie większa od pojemności w pętli sprzężenia zwrotnego. Zubożony tranzystor MCc, pełniący rolę pojemności sprzęgającej, posia-
da jedynie dwa terminale, z czego wynika forma jego przedstawienia na **Rys. 9.9**. Celem osiągnięcia poprawnej pracy nieliniowego układu kompensacji bieguna zerem, tranzystor \(M_{a0} \) jest w istocie połączeniem równoległym 10 tranzystorów \(M_{a} \).

Rys. 9.9 Schemat ideowy przedwzmacniacza ładunkowego zawierającego układ kompensacji bieguna zerem w prostej wersji zastosowanej w układach MAMBO I i II.

Układ kompensacji bieguna zerem samoczynnie adaptuje się do poziomu prądu upływu detektora, jednakże przy bardzo dużych prądach upływu może dochodzić w układzie do wzbudzania, gdyż układ tranzystorów \(M_{a1–M_{a2}} \) tworzy dodatkowy stopień wzmacniający. Tranzystory jednak są tak zwymiarowane i ich punkty pracy są dobrane w taki sposób, że warunek generacji nie jest spełniony dla wartości prądów wpływających do wzmacniacza do poziomów wielokrotnie przekraczających spodziewane wartości prądów upływu detektoru. Wzrost prądów upływu do wartości zagrażających poprawnej pracy wzmacniacza oznacza w praktyce detektor nienadającego się do użycia.

Uproszczony schemat małosygnalowy przedwzmacniacza ładunkowego jest pokazany na **Rys. 9.10**. Jeżeli iloczyn rezystancji wyjściowej wzmacniacza, \(r_{w} \), i transkonduktancji tranzystora wyjściowego jest wielokrotnie większy od jedności, który to warunek jest spełniony w zaprojektowanym układzie, to napięcie wyjściowe \(V_{\text{amp}} \) jest proporcjonalne do ładunku pochodzącego ze źródła \(i_{\text{det}} \). Napięcie \(V_{\text{amp}} \) jest przekazane do drugiego stopnia poprzez sprzężenie pojemnościowe za pośrednictwem pojemności \(C_c \). Rozkładanie pojemności całkującej następuje przez rezystancję \(r_c \), której wartość w rzeczywistości zależy od napięcia wyjściowego\(^{40}\). Rezystancja \(r_c \) (połączenie równoległe 10 rezystancji \(r_c \)) śledzi zmiany rezystancji \(r_c \) skutkując pożądanym położeniem zera transmisji przedwzmacniacza ładunkowego dla tej samej pulsacji co biegun.

Drugi stopień wzmacniacza, który pokazany jest na **Rys. 9.11**, również bazuje na strukturze wspólnego źródła. Wymiary i prądy polaryzacji tranzystorów \(M_{c0} \), pokazanego na **Rys. 9.9**, i \(M_{a0} \), pokazanego na **Rys. 9.11**, wyliczone są w taki sposób, aby poziomy stałoprądowe napięć na wejściach obwodu stopni były sobie równe. Takie podejście konieczne jest dla poprawnego funkcjonowania układu kompensacji bieguna zerem. Pojemność szeregowa, \(M_{C} \) (**Rys. 9.9**), zapewniająca różniczowanie sygnału jest pojemnością sprzęży

\(^{40}\) Model małosygnalowy jest niewystarczający do dokładnej analizy pracy translinearnego układu wymiany biegunia na zero. Analiza wielkosygnalowa prowadzi jednak do skomplikowanego, niezbyt przydatnego praktycznie zapisu, zmuszając do symulacji, jako jedynego skutecznego środka projektowego.

150
gającą stopnie, która też, jak było opisane wcześniej, stanowi część układu kompensacji bieguna zerem w pierwszym stopniu wzmacniacza.

Rys. 9.10 Uproszczony schemat małosygnalowy przedwzmacniacza ładunkowego.

Odpowiedni format transmittancji układu filtrującego zależy od transkonduktancji tranzystora M_{s1}, pojemności M_C sprzężającej z pierwszym stopniem, pojemności i rezystancji w sprzężeniu zwrotnym oraz pojemności obciążającej M_d. Pojemność i rezystancja w sprzężeniu zwrotnym są odpowiednio zrealizowane przy użyciu tranzystorów M_{R6} i M_{R7}. Niewielki prąd wymuszony przez tranzystor M_{s4} jest sumowany ze wzmocnionym w pierwszym stopniu prądem upływu detektora.

Rys. 9.11 Schemat ideowy filtra kształcącego typu CR–RC.

Suma tych dwóch prądów, przy czym prąd wpływający z pierwszego stopnia z założenia jest niewielki, definiuje konduktancję kanału tranzystora M_{R7}. Wymagana bardzo wysoka wartość rezystancji w sprzężeniu zwrotnym jest osiągnięta przez polaryzację tranzystora M_{R7} stałym prądem, wynoszącym od kilku do kilkudziesięciu nanoamperów. Efektywnie rezystancją widzianą w sprzężeniu zwrotnym jest przez to konduktancja kanału tego tranzystora. Utrzymanie na stałej wartości bramka–źródło i podłoże–źródło tranzystora M_{R7} przez filtr dolnoprzepustowy zbudowany na tranzystorze M_{C3} i układ odtwarzania linii bazowej skutkuje brakiem zależności prądu kanału tranzystora M_{R7} od tych napięć. Jedyną pozostałą zależnością jest modulacja prądu kanału tego tranzystora przez napięcie dren–źródło, co było właśnie celem do osiągnięcia.

Uproszczony schemat małosygnalowy zastosowanego filtra kształtującego jest pokazany na Rys. 9.12. Model małosygnalowy pozwala na wyprowadzenie zależności na charakterysty-
stykę filtru. Na potrzeby przeprowadzenia wyprowadzenia założono, że transmitancja układu odzyskiwania składowej stałej jest jednostkowa w całym zakresie częstotliwości.

Rys. 9.12 Uproszczony schemat małosygnalowy filtru kształtującego typu CR–RC.

Transmitancja operatorowa $H_{sh}(s)$ układu filtrującego zbudowanego z wykorzystaniem układu, którego schemat przedstawiony jest na Rys. 9.12, może być podana w postaci ilorazu dwóch wielomianów i przyrównana do żądanej formy transmitancji filtru CR–RC:

$$H_{sh}(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{N(s)}{D(s)} \equiv \frac{A_s}{(s + \omega_0)^2}, \quad (9.1)$$

gdzie $v_{in}(s)$ jest napięciem na wejściu filtru, przy czym zakłada się, że filtr jest sterowany przez źródło napięcia przez pojemność zbudowaną na tranzystorze MC_c przyjętą dla dalszego wyprowadzenia jako C_c. Kolejne kroki, dane zależnościami od (9.2) do (9.10) służą wyznaczeniu zależności pomiędzy parametrami układu dla uzyskania żądanej formy funkcji transmitancji. Analizując model małosygnalowy układu z Rys. 9.12, można wykazać, że mianownik $D(s)$ i licznik $N(s)$ mogą być zapisane w następujących postaciach:

$$D(s) = g_m + C_f g_m r_f s + s \left(C_c + C_h + C_i + C_f C_r r_f s + C_c C_h r_f s + C_f C_h r_f s + C_h C_f r_f s \right), \quad (9.2)$$

$$N(s) = s C_f \left(1 - g_m r_f + C_f r_f s \right), \quad (9.3)$$

gdzie dla uproszczenia przyjęto: g_m jako transkonduktancję tranzystora M_{s1}, C_f jako pojedynczość tranzystora MC_{cs}, r_f jako rezystancję tranzystora MR_{s1}, C_f jako całkowitą pojedynczość obciążającą układ, wliczając w to pojedynczość tranzystora M_{s1}, C_f jako całkowitą pojedynczość widzianą na wejściu układu (dokładnie na bramce tranzystora wejściowego za pojedynczością sprzężającą). Następnie, oznaczając przez współczynniki C_1 i C_2 następujące związki:

$$C_1 = C_c C_f + C_c C_h + C_h C_i + C_f C_h + C_f C_i, \quad (9.4)$$

$$C_2 = C_h C_c + C_h C_i, \quad (9.5)$$

pulsacja ω_0 może zostać zapisana w następującej postaci, która wynika z przyrównania ze wzoru (9.1):

$$\omega_0^2 = \frac{2 r_f (C_c C_f + C_c C_h + C_f C_h + C_f C_i + C_c C_i)}{C_c + C_h + C_i + C_f g_m r_f}.$$

\[
\frac{2r_f C_1}{C_c + C_h + C_i + C_f g_m r_f}.
\]

(9.6)

Z kolei poprzez odpowiednie przyrównanie, szukając odpowiedniej formy mianownika, otrzymuje się wyrażenia na wymaganą, realizowaną fizycznie, transkonduktancję transystora \(M_i \) i pulsację \(\omega_k \):

\[
g_m = \frac{C_2 + C_1 + 2\sqrt{C_1 C_2}}{C_f^2 r_f},
\]

(9.7)

\[
\omega_k = \frac{2C_f r_f}{C_c + C_2 + 2\sqrt{C_1 C_2} + C_h + C_i}.
\]

(9.8)

Wybierając stałą czasową odpowiedzi filtru i zakładając część pojemności za dane, z tego względu, że ich wartości wynikają albo z ograniczeń projektowych na pierwszy stopień wzmacniacza lub z ograniczeń na powierzchnię zajmowaną miejsca przez fizyczne reprezentacje elementów, można wyliczyć pozostałe wielkości ze wzorów (9.7) i (9.8). Następnie, przyrównując licznik \(N(s) \) do wyrażenia \(A_s \) i po uwzględnieniu następujących zależności, które zachodzą dla typowych wartości elementów:

\[
g_m r_f \gg 1, \quad \frac{g_m r_f}{C_f} \gg 1, \quad \frac{g_m}{C_f 2\pi f} \gg 1 \Rightarrow f < \frac{10^{-6}}{10^{-15} 2\pi} = 160\text{MHz},
\]

(9.9)

otrzymuje się współczynnik \(A_s \), stanowiący o amplitudzie impulsu odpowiedzi czasowej otrzymanej przy założeniu idealnego jednostkowego wymuszenia impulsowego:

\[
A_f = \frac{C_c (1 - g_m r_f)}{r_f C_c \omega_k}.
\]

(9.10)

Parametry odpowiedzi na impuls ładunku podany na wejście wzmacniacza określone czasem kształtowania (ang. shaping time), \(\tau_p = 200 \text{ ns} \), i wzmocnieniu konwersji ładunku na napięcie, \(g = 1.12 \text{ V/\text{fC}} \), zostają osiągnięte, gdy wybrane są następujące wartości elementów pasywnych i punkty pracy tranzystorów: pojemność \(M_c = 28 \text{ fF} \), pojemność \(M_{\text{es}} = 3.3 \text{ fF} \), rezystancja \(M_{\text{rs}} = 50 \Omega \), transkonduktancja \(G_m = 5.8 \mu\text{S} \) i pojemność \(M_{\text{sc}} = 30 \text{ fF} \). W ten sposób osiąga się dopasowanie charakterystyki projektowanego układu filtru kształtującego z wyrażeniem analitycznym opisującym filtr typu CR–RC2.

Przeprowadzona analiza malosygnalowa jest uproszczona i właściwy projekt układow filtru kształtującego wymagał adjustacji niektórych parametrów w symulacji komputerowej ze względu na elementy pasożytnicze.

Rys. 9.13 Odpowiedź impulsowa toru analogowego wykreślona bez bieguna w transmisji operatorowej przedwzmacniacza (CR–RC) i z uwzględnieniem bieguna w transmisji operatorowej przedwzmacniacza (CR–RC2).

Układ odtwarzający składową stałą zbudowany jest z wykorzystaniem dwóch identycznych tranzystorów MD1 i MD2, skonfigurowanych w połączeniu diodowym, które są zasilane przez dwa źródła prądu. Prądy źródeł, które są zbudowane na bazie dwóch grup tranzystorów, tj. tranzystorów typu PMOS w górnej gałęzi i tranzystorów typu NMOS w dolnej gałęzi, pozostają odpowiednio w stosunku 2:1, co pozwala przenieść zewnątrz definicji stałe napięcia (baseline) na sprzężone pojemnościowo wyjście filtra kształtującego. Układ działa w sposób nieliniowy. Dla małych sygnałów pojemności MCCS wraz z rezyスタンcją dynamiczną, r_BLR, widzianą z wejścia układu odtwarzającego składową stałą, wyrażona jest wzorem:

$$r_{BLR} = 2g_m^{-1} = 2 \frac{n kT}{I_{MD1} q},$$

(9.11)

gdzie I_{MD1} jest prądem płynącym przez tranzystor MD1, n jest współczynnikiem nachylenia i kT/q jest potencjałem termicznym, stanowi filtr górnoprzepustowy. Sygnały pochodzące od rejestracji zdarzeń interakcji promieniowania z detektem są szybkie i dają wysokie amplitudy przebiegów na wyjściu filtra kształtującego. W obecności takich przebiegów układ staje się nieczuły na dryf składowej stałej. Szybko narastający potencjał źródła tranzystora MD1, skutkuje zupełnym odcieniem tego tranzystora poprzez całkowite przekierowanie prędkości prądu do źródła napięcia referencyjnego (baseline), tak że napięcie na źródele tranzystora MD1 przestaje być zależne od tego napięcia referencyjnego. Stan taki utrzymuje się aż do momentu, kiedy impuls zaniknie, tj. kiedy poziom napięcia na wyjściu filtra kształtującego powróci do poziomu bliskiego wartości bazowej. Dla poprawnej pracy układu odtwarzającego składową stałą tranzystory MD1 i MD2 muszą być stannie dopasowane i muszą pracować przy bardzo małych prądach polaryzacji, zwykle wynoszących nie więcej niż kilka nanoamperów. Niska wartość prądu polaryzacji jest istotna dla uniknięcia rozładowywania pojemności MCCS przez źródło prądowe w dolnej gałęzi układu, w czasie kiedy tranzystor MD1 jest odcięty. W bardziej zaawansowanych, późniejszych wersjach układów MAMBO został użyty zaproponowany przeze mnie układ odtwarzający składową
stałą, który jest przedstawiony na Rys. 9.14. W układzie tym napięcie stałe na wyjściu filtru kształtującego wyrównuje się z napięciem referencyjnym w wyniku ustalenia się punktu pracy tranzystorów M_{D1} i M_{D2}, skonfigurowanych w połączeniach diodowych. Filtry dolnoprzepustowe, zbudowane na parach tranzystorów M_{R1} i M_{C1} oraz M_{R2} i M_{C2}, powodują pożądane zwiększenie stałej czasowej filtra górnoprzepustowego na wyjściu filtru kształtującego. Osiągnięte jest to przez wymuszenie pracy przy wykorzystaniu małosygnalowej rezystancji kanału, która wynika ze stabilizacji napięcia bramka-źródło tranzystorów M_{D1} i M_{D2}.

Rys. 9.14 Schemat ideowy udoskonalonego układu odtwarzającego składową stałą.

Skuteczność ulepszonej wersji układu odtwarzającego składową stałą jest zilustrowana na Rys. 9.15. Na Rys. 9.15a zostały pokazane przebiegi czasowe na wyjściu toru analogowego korzystającego z klasycznej i ulepszonej formy układu odtwarzającego składową stałą dla prądu polaryzującego 1 nA. Przy tak niskim prądzie polaryzacji różnica pomiędzy dwiema wersjami układu odtwarzającego składową stałą jest niewidoczna. Jednakże już dla prądu polaryzacji wynoszącego 5 nA, co jest pokazane na Rys. 9.15b, stała czasowa klasycznej wersji układu odtwarzającego składową stałą staje się za mała i na przebiegu pojawia się silny przerzut. Przerzut jest nieobecny na przebiegu dla wersji ulepszonej.

Rys. 9.15 Przebiegi czasowe na wyjściu toru analogowego korzystającego z klasycznej (krzywa ciągła) i ulepszonej (krzywa przerwana) formy układu odtwarzającego składową stałą dla prądu polaryzującego 1 nA a) i 5 nA b).

Tranzystory M_{3} i M_{4} obcinają impulsy o największych amplitudach, dla których po prawnej kształtowanie jest mniej istotne, zapewniając szybki powrót do linii bazowej i pozwalać na uniknięcie nasycenia układu. Tranzystor MC_{CS} zapewnia pojemnościowe

W zestawieniu rejestru przesuwnego wszystkie piksele połączone są w jeden łańcuch i odczyt następuje w wyniku taktowania zewnętrznym zegarem CK_READ w konfiguracji, jaka jest pokazana na Rys. 9.17. Do przełączania pomiędzy konfiguracjami wykorzystane są wejścia read i acq, które są sterowane sygnałami o niezachodzących na siebie poziomach. Klucze do zmiany konfiguracji są pojedynczymi tranzystorami NMOS, co jest wytrzymujące do przenoszenia wysokiego poziomu logicznego ze względu na zasilanie licznika z obniżonego napięcia względem poziomów sygnałów kontrolnych. Wszystkie tranzystory w liczniku zostały zaprojektowane z płynającym podłożem, który jest bardzo oszczędny, jeśli chodzi o zajmowane miejsce. Schemat ideowy pojedynczej komórki licznika z przerzutnikiem i kluczami pozwalającymi na zmianę konfiguracji jest pokazany na Rys. 9.18.

Do realizacji przerzutników dla układów MAMBO została wybrana struktura różnicowa w celu polepszenia odporności układu na przenikanie zakłóceń do części analogowej. Schemat ideowy jednej z użytych wersji przerzutnika typu *master/slave*, wyzwalanego narastającym zboczem zegarowym, jest pokazany na Rys. 9.19. Struktury i działanie układów MAMBO uległy ulepszoniom w kolejnych wersjach, jednak celem programu pozostawało wykazanie przydatności technologii SOI do budowy detektorów promieniowania [116][117][119].
Rys. 9.19 Schemat ideowy różnicowego przerzutnika typu D wyzwalanego zboczem sygnału zegara (część układu zaznaczona na szaro zapobiega możliwości niepoprawnej pracy układu w wyniku prądu upływu tranzytora sterowanego przez zegar).

I tak w późniejszych wersjach układów MAMBO po zwiększeniu rozmiarów piksela i spowodowaniu, że wyjścia różnicowe niektórych przerzutników zostały obciążone nierównymi pojemnościami, spostrzeżono, że mogą wystąpić problemy z poprawną pracą układu przedstawionego na Rys. 9.19. Dla zrozumienia istoty powstałych problemów zwrócono uwagę na fakt, że stan części master przerzutnika pokazanego na Rys. 9.19 może być zmieniony do stanu „00”, co przy znaczącym obciążeniu pojemnościowym części slave powoduje brak pożądanego impulsu na wyprowadzeniu tranzystora sterowanego przez zegar (ang. hit acquisition). W drugim okresie, kiedy sygnał read jest w stanie wysokim, zawartości liczników są wysyłane szeregowo na wewnątrz układu (ang. readout). Przełączanie pomiędzy cyklami dokonywane jest zewnętrznymi sygnałami kontrolnymi. Na przebiegach czasowych pokazanych na Rys. 9.20 wartość binarna na szeregowym wyjściu danych po powrocie sygnału kontrolnego read do stanu wysokiego wyraża liczbę zarejestrowanych zdarzeń w okresie, kiedy ten sygnał kontrolny był w stanie niskim.

Celem ilustracji sposobu pracy układu, na Rys. 9.20, pokazane są przebiegi czasowe otrzymane w symulacji odpowiedzi układu piksela z 12–bitowym licznikiem na ciąg impulsów ładunkowych o wartości 1000 dziur i o częstotliwości powtarzania 1 MHz. Symulacja obejmuje działanie pojedynczego piksela. Zbieranie danych zachodzi w dwóch cyklach. Pierwszym okresem jest akwizycja impulsów, kiedy sygnał read jest w stanie niskim i zachodzi wtedy zliczanie tych impulsów wewnątrz piksela (ang. hit acquisition). W drugim okresie, kiedy sygnał read jest w stanie wysokim, zawartości liczników są wysyłane szeregowo na wewnątrz układu (ang. readout). Przełączanie pomiędzy cyklami dokonywane jest zewnętrznymi sygnałami kontrolnymi. Na przebiegach czasowych pokazanych na Rys. 9.20 wartość binarna na szeregowym wyjściu danych po powrocie sygnału kontrolnego read do stanu wysokiego wyraża liczbę zarejestrowanych zdarzeń w okresie, kiedy ten sygnał kontrolny był w stanie niskim.

Część analogowa piksela oraz dyskryminator są zasilane z pojedynczego źródła napięcia 1,8 V. Zasilania części wzmacniacza i dyskryminatora są rozdzielone. Licznik pracuje przy napięciu zasilania obniżonym do 1 V. Do adaptacji poziomów logicznych służy inwerter na wyjściu dyskryminatora. Odczyt zgromadzonej liczby zliczeń zachodzi poprzez pojedyncze wyjście różnicowe, przy czym szeregowy przepływ informacji przez wszystkie piksele w układzie taktowany jest przez centralny zegar odczytywowy. Pierwszy cykl odczytowy jest używany do wyzerowania liczników.
Testy toru analogowego przetwarzania sygnału w pikselu

Dla ułatwienia przeprowadzenia charakteryzacji zaprojektowanego układu matrycy wyposażono w wyróżnione piksele, których wszystkie sygnały były dostępne bezpośrednio na dodatkowych polach kontaktowych. Testy takiego wyselekjonowanego piksela pozwoliły na wykonanie pomiarów określających podstawowe parametry toru przetwarzania sygnału w pikselu. Pakiet projektowy (ang. process design kit), w wersji dostępnej w czasie wykonania projektu układu, nie zawierał informacji o ekstrakcji pojemności pasywnych. Z tego powodu konieczne było dokonanie korekty ustawień względem wartości nominalnych w czasie testów. Wzmocnienie wzmacniacza zostało zmierzone na 0,76 V/fC i czas kształtowania sygnału wynosił około 300 ns. Ekwiwalentny układ szumów, zmierzony, jako wariancja próbki przebiegu czasowego pod nieobecnoscia sygnału wynosił około 80 e-. Wyprowadzenia analogowych sygnałów z wyjścia filtru kształtującego z wybranych pikseli pozwoliły na rejestrację przebiegów czasowych odpowiedzi na wymuszenie na fotony promieniowania X, emitowanego z źródeł radioaktywnych. W testach użyto źródeł 109Cd, wysyłającego fotony o energii 22 keV, i 55Fe, dającego fotony o energii 5,9 keV. Wybrane przykłady zarejestrowanych przebiegów czasowych są pokazane na Rys. 9.21. Zestawy krzywych zarejestrowanych w różnych okresach odzwierciedlają oczekiwane formy CR–RC odpowiedzi czasowej dla małych sygnałów oraz ograniczenie wzmocnienia i szybki powrót do linii bazowej dla dużych sygnałów. Wyjścia analogowe są po przejściu przez układ odtwarzający składową stałą, który jest odseparowany od wyjścia z układu MAMBO przez wtórnik źródłowy, który znajduje się w pikselu. Widoczna zmiana właściwości sygnałów dla źródła 109Cd w stosunku do 55Fe wynika ze zmiany transmitancji filtra kształtującego dla dużych amplitud sygnałów. Jest to spowodowane włączaniem się diod, zbudowanych na tranzystorach M3i i M4, z Rys. 9.11, które zapobiega nasycaniu się.
wzmacniacza. Każda krzywa, przedstawiona na Rys. 9.21, jest wynikiem uśrednienia 25 niezależnych pomiarów, wykonanego celem eliminacji szumu w prezentowanych danych.

Rys. 9.21 Uśrednione przebiegi czasowe odpowiedzi toru analogowego na fotony promieniowania X, pochodzącego ze źródeł radioaktywnych 109Cd i 55Fe.

W testowanym układzie napięcie zasilania części analogowej było ustalone na 1,8 V i prądy polarizacji były ustawione na 1,1 μA, 0,26 μA i 0,5 μA odpowiednio w pierwszym i drugim stopniu wzmacniacza oraz w dyskryminatorze. Jednocześnie z przebiegami analogowymi dostępne były do monitorowania wyjścia dyskryminatorów z wyodrębnionych pikseli. Celem takiego zabiegu było umożliwienie sprawdzenia poprawności przyjmowania impulsów do zliczania przez liczniki w pikselach. Przykładowe przebiegi sygnałów na wyjściu filtra kształtującego oraz na wyjściu dyskryminatora dla różnych poziomów napięcia referencyjnego podawanego na dyskryminator są przedstawione na Rys. 9.22 i Rys. 9.23 odpowiednio dla stymulacji fotonami ze źródeł 109Cd i 55Fe. Napięcie linii bazowej podawane na układ odzyskiwania składowej stałej wynosiło 0,4 V. W prezentacji przebiegów czasowych na Rys. 9.22 i Rys. 9.23 napięcie to zostało odjęte. Do prezentacji danych wykreślonych na tych rysunkach wybrano jedynie przypadki odpowiadające zdarzeniom pełnego zbierania ładunku powstałego w detektorze przez pojedynczy piksel. Sygnały o mniejszych amplitudach były generowane wtedy, kiedy ładunek był dzielony pomiędzy sąsiednie piksele. W sekwencji przeprowadzonych testów zmieniane było napięcie referencyjne podawane na wejście odniesienia dyskryminatora, oznaczone jako v_{ref} na Rys. 9.16, w zakresie od 0,425 V do 0,6 V. Zmianom tego napięcia odpowiadała zmiana długości czasu wyzwolenia dyskryminatora (ang. time–over–threshold – TOT) z zakresu od 841 ns do 267 ns dla fotonów o energii 5,9 keV. Natomiast zmiany napięcia referencyjnego dyskryminatora w zakresie od 0,45 V do 0,75 V odpowiadały zmianom długości czasu wyzwolenia dyskryminatora z zakresu od 374 ns do 54 ns dla fotonów o energii 22 keV. Sygnały na wyjściach dyskryminatorów wolne były od oscylacji i innego rodzaju zaburzeń.

Testowanie układu detektora monolitycznego MAMBO ukierunkowane było również na pogłębianie wiedzy na temat wzajemnego sprzężenia pomiędzy warstwą zawierającą układy elektroniczne i detektorem wraz z jego ilościową ewaluacją. Dodatkowym elemen-
tem analizy była ocena właściwości części podłożowej wafla, która to część stanowi obszar czynny detektora. Jako pierwsza przeanalizowana została zależność użytecznego progu dyskryminacji od napięcia zasilania liczników w pikselu. Pomiary zostały przeprowadzone przy zmianach napięcia zasilania liczników w zakresie od 1,0 V do 1,8 V w połączeniu ze zmianą napięć polaryzacji detektora od 2,5 V do 10,0 V.

Rys. 9.22 Przebiegi sygnałów na wyjściu filtru kształtującego a) oraz na wyjściu dyskryminatora b) dla różnych poziomów napięcia referencyjnego podawanego na dyskryminator dla źródła 55Fe.

Wszystkie pomiary zostały przeprowadzone dla nominalnego napięcia bazowego układu odzyskiwania składowej stałej równego 400 mV. Zastosowana metoda polegała na przemiataniu poprzez zakres napięcia referencyjnego podawanego na dyskryminator. Celem było wyznaczenie takich wartości napięć progowych dyskryminatora, dla których nastąpiło ustanie zliczania samoistnych impulsów pochodzących od szumu i od przesłuchów z przerzutów binarnych, towarzyszących zmianom wartości liczników. Napięcie referencyjne dyskryminatora, pierwotnie znajdujące się poniżej napięcia bazowego układu odzyskiwania składowej stałej, było sukcesywnie podnoszone aż do osiągnięcia stanu braku zliczeń.
Rys. 9.23 Przebiegi sygnałów na wyjściu filtra kształtującego a) oraz na wyjściu dyskryminatora b) dla różnych poziomów napięcia referencyjnego podawanego na dyskryminator dla źródła 109Cd.

Najniższa wartość tego napięcia, skutkująca brakiem zliczeń, zachowywana była, jako minimalny użyteczny próg dyskryminacji. Wynik analizy zależności użytecznego progu dyskryminacji od napięcia zasilania liczników jest przedstawiony na Rys. 9.24 dla różnych napięć polaryzacji detektora i dla napięć zasilania staticznej części cyfrowej, wynoszących 1,5 V i 1,8 V. Można było zauważyć, że napięcie zasilania liczników wynoszące 1,3 V lub więcej skutkowało pojawieniem się dodatkowych zakłóceń obserwowanych przy niskich progach dyskryminacji. Widoczne stawało się występowanie niestabilności w działaniu toru wzmacniacza. Powstawanie niestabilności może być wytłumaczone przez samowzbudzanie się toru analogowego wywołane przez wstrzykiwanie ładunku w następstwie zmian stanów licznika. Obserwowano, że łatwiej i częściej dochodziło do przebiegów oscyliacyjnych lub zupełnej niestabilności, kiedy napięcie polaryzacji detektora było podnoszone, co można w oczywisty sposób wytłumaczyć powiększaniem się głębokości strefy zubożonej detektora wraz ze wzrastającym napięciem polaryzacji detektora. Powiększanie się strefy zubożonej detektora prowadzi do zamykania się większej liczby linii pola elektrycznego pomiędzy obszarem zajmowanym przez licznik a wejściem wzmacniacza. W wyniku
Rys. 9.24 Zależność użytecznego prógu dyskrymynacji od napięcia zasilania liczników dla różnych napięć polaryzacji detektora i dla napięć zasilania statycznej części cyfrowej, wynoszących 1,5 V i 1,8 V.

Zgodnie z oczekiwaniami, nie zaobserwowano zależności minimalnego użytecznego progu dyskrymynacji od napięcia zasilania statycznej części cyfrowej. Natomiast nieoczekiwanie było wyznaczenie użytecznego progu dyskrymynacji poniżej napięcia bazowego układu odzyskiwania składowej stałej dla niskich napięć zasilania liczników. Nietrudno jest jednak błąd w pomiarach ani w metodzie wyznaczenia użytecznego progu dyskrymynatora. W wyniku dokładniejszej analizy okazało się, że w zakresie zera polaryzacji detektora do około 3 V dochodziło do przesunięcia punktu pracy układu odzyskiwania składowej stałej o kilkadziesiąt miliwoltów, co powodowało ekwiwalentne, niepożądane przesunięcie progu wyzwalania dyskrymynatora. Jest to wynik zmiany polaryzacji detektora zachodzące w zakresie niskich napięć w okolicach 4 V. Oznacza to przesunięcie prógu dyskrymynacji wskutek ekstrostatycznego oddziaływania pomiędzy częścią detektorową a tranzystorami elektronicznego układu odczytowego. Drugim z zaobserwowanych efektów jest ustalenie się częstotliwości zliczeń na stałym poziomie dla napięć polaryzacji detektora powyżej 5 V niezależnie od dalszego wzrostu przykladanego napięcia polaryzacji detektora. Wynik ten jest sprzeczny z oczekiwaniem. Rozszerzenie strefy zubożonej, zachodzące wraz ze wzrostem napięcia polaryzacji, powinno skutkować zwiększaniem się częstotliwości zliczeń ze względu na powiększanie się objętości czynnej detektora. Ze względu na możliwe dalsze istotne przesunięcie prógu dyskrymynacji wyciągnięcie pełnego wniosku na podstawie jedynie danych przedstawionych na Rys. 9.25 jest niemożliwe. Jako że każdy
foton pochodzący ze źródła 109Cd generuje ściśle określoną liczbę nośników i w konsekwencji wywołuje przebieg napięciowy o skończonej amplitudzie, zwiększenie progu dyskryminacji powyżej maksymalnego poziomu sygnału naturalnie prowadzi do osiągnięcia stanu braku zliczeń. Osiągnięcie braku zliczeń jest równoważne wyznaczeniu użycznego stanu odniesienia, do którego można odnosić wyniki osiągnięte dla różnych polaryzacji detektora. W tym celu wykonano nowe pomiary częstotliwości zliczeń w zależności od napięcia referencyjnego dyskryminatora dla trzech wybranych napięć polaryzacji detektora, tj. 2,5 V, 5,0 V i 10 0V.

Rys. 9.25 Częstotliwość zliczeń zdarzeń pochodzących od fotonów emitowanych ze źródła 109Cd w zależności od napięcia polaryzacji detektora (napięcie bramki spodniej) dla dwóch wybranych napięć referencyjnych dyskryminatora, tj. 0,5 V i 0,6 V, dla niezmienionej ekspozycji detektora.

Przeprowadzone pomiary pokazały, że analogowo-cyfrowy tor przetwarzania sygnałów, pochodzących z oddziaływania promieniowania z materiałem detektora, został z powodzeniem zaimplementowany w pełni zubożonym procesie 0,2 μm CMOS SOI. Testowany układ MAMBO jest prototypem pokazującym możliwości nowoczesnej technologii SOI w użyciu do budowy monolitycznych detektorów pikselowych zupełnie nowej generacji. Detekty w sposób bezprecedensowy pozwalają na połączenie źródła sygnału z kanałem odczytowym o rozbudowanej funkcjonalności, którego jedynym ograniczeniem jest wiel-
kość piksela, a nie obostrzenia występujące np. w detektorach MAPS, gdzie możliwe jest używanie jedynie tranzystorów NMOS w obrębie piksela.

Rys. 9.26 Częstość zliczeń zdarzeń od fotonów ze źródła 109Cd w zależności od napięcia referencyjnego dyskryminatora dla trzech wybranych napięć polaryzacji detektora, tj. 2,5 V, 5,0 V i 10,0 V po korekcji przesunięcia prog dyskryminacji.

Niestety, cena za elastyczność w projekcie układu elektronicznego jest istnienie sprzężeń pomiędzy tym układem i detektorem. Istnienie tych sprzężeń istotnie ogranicza Möglichkeit do uzyskania parametry systemu detekcyjnego. Dlatego też po wykazaniu istnienia tych sprzężeń, zrozumieniu ściężek ich zachodzenia i oszacowaniu ilościowym stopnia tych sprzężeń uwaga została skupiona na znalezieniu sposobów skutecznego ekranowania, które mogłoby być zaimplementowane jako rozszerzenie oferowanego dotychczas procesu.

9.5. Postulaty polepszenia wyjściowego procesu SOI do budowy detektorów pikselowych

Wyjściowy proces SOI nie zawierał żadnego elementu pozwalającego na elektryczne odseparowanie warstwy zawierającej układy elektroniczne od detektora. Dodatkowo, tak jak jest przedstawione na Rys. 9.27a, implantacje niewielkich obszarów typu P⁺ dokonywane przez niewielkie otwarcia w tlenku zagrzebanym skutkowały niekorzystnym, nierównomiernym rozkładem pola elektrycznego przy rozmiarach tych implantacji w dużych odstępach. Otwarcia w tlenku zagrzebanym, konieczne później do wytworzenia kontaktów do przesyłania sygnałów z detektora do warstwy zawierającej układy elektroniczne, muszą być naturalnie niewielkich rozmiarów, aby nie tracić powierzchni dla ulokowania układów elektronicznych. Utrzymanie wirtualnie stałego potencjału elektrycznego pod

41 Punktowe implantacje mogą skutkować powstawaniem obszarów martwych, tj. bez pola elektrycznego, dlatego w projektowaniu pikselowych detektorów planarnych dąży się do minimalizacji odstępów między implantacjami elektrod zbierających.
warstwą tlenku zagrzebanego, a co za tym idzie, ograniczenie wpływu polaryzacji detektora na układ elektroniczny, możliwe było jedynie wtedy, kiedy te implantowane obszary umieszczone były blisko siebie i były podłączone do wspólnego stałego potencjału (wspólne wejście wzmacniacza). Testy, przeprowadzone wcześniej przez mnie, pozwoliły na wyróżnienie występowania niekorzystnych zjawisk w układzie detektora. Wyniki tych testów były istotnym impulsem do dyskusji ulepszenia procesu technologicznego. Na początku dostawca technologii, mając wstępną, jakościową świadomość występowania omawianych niekorzystnych zjawisk, sam wprowadził w wyniku własnych badań głęboką studnię BPW, której implantacja dokonywana jest przez warstwę tlenku zagrzebanego. Studnia BPW rozciąga się na głębokość około 200 nm poniżej warstwy tlenku zagrzebanego i umożliwia wytworzenie bardziej równomiernego pola elektrycznego w detektorze, tak jak jest pokazane na Rys. 9.27b. Dodatkowo, rozciągając się pod obszary zajmowane przez układy elektroniczne, pozwala na utrzymanie stałego potencjału pod tymi obszarami. Jednakże przydatność BPW, w tym ostatnim zakresie, ograniczona jest jedynie do zastosowania poza polem zajmowanym przez piksele. Głęboka studnia BPW, zastosowana w obrębie piksela, konkuruje o zbierany ładunek, a jeśli jest użyta jako część elektrody zbierającej ładunek, tak jak jest pokazane na Rys. 9.27c, to skutkuje bezpośrednim sprzężeniem pojemnościowym każdego węzła kanału elektronicznego do wejścia wzmacniacza, co jest również zilustrowane na Rys. 9.27c.

Zatem sama studnia BPW nie stanowi rozwiązania dla problemu pojemnościowego sprzężenia układów elektronicznych i detektora, którego istnienie wynika z bezpośredniej bliskości tych dwóch części. Przyjętym standardem jest reprezentowanie obszarów typu P kolorem czerwonym, a obszarów typu N kolorem zielonym na rysunkach.

9.5.1. **Wprowadzenie grubej warstwy SOI**

Można wywnioskować, że uzyskanie pełnego sukcesu w elektrycznym odseparowaniu układów elektronicznych od detektora można otrzymać przez rezygnację z pełni zubożonej technologii SOI na rzecz wytworzenia detektora w zupełnie zmienionym procesie, tj. w takim, w którym warstwa krzemu przeznaczonego na wytworzenie odczytowego układu

Rys. 9.27 Nierównomierny rozkład pola elektrycznego w pikselu typu „P na podłożu N” w przypadku małych obszarów implantacji typu P rozmieszczonych w dużych odstępach a), polepszony rozkład pola elektrycznego osiągnięty dzięki powiększeniu rozmiarów obszarów implantacji przy użyciu głębokich studni typu P (BPW) b), ilustracja bezpośredniego sprzężenia pojemnościowego do wejścia wzmacniacza dla przypadku rozciągania się obszaru studni BPW pod układem elektronicznym c).

Można wywnioskować, że uzyskanie pełnego sukcesu w elektrycznym odseparowaniu układów elektronicznych od detektora można otrzymać przez rezygnację z pełni zubożonej technologii SOI na rzecz wytworzenia detektora w zupełnie zmienionym procesie, tj. w takim, w którym warstwa krzemu przeznaczonego na wytworzenie odczytowego układu

42\(^{11}\)B⁺ przy energii 100 keV i dawce 1×10\(^{13}\) cm\(^{-2}\).
elektronicznego będzie znacząco grubszego. Grubość warstwy SOI musi być taka, aby pod każdym tranzystorem mogła istnieć, niezależnie od jego polaryzacji, wystarczająco grubą warstwą o niskiej rezystywności skuteczna do wytworzenia ekranu. Precedensem procesu o takich parametrach była technologia DMILL używana w latach 90. do budowy układów odpornych na promieniowanie w zastosowaniach z zakresu od militarnych do fizyki wysokich energii [118]. W technologii dla detektorów warstwa SOI musi stanowić ciągłość, tak aby również połączenia na ściężkach metalowych pomiędzy tranzystorami były skutecznie ekranowane. Przykład takiej hipotetycznej struktury detektora, jako jednego z rozwiązań zaproponowanych przeze mnie, jest pokazany na Rys. 9.28. Warstwa zawierająca układy elektroniczne jest w pełni odizolowana od detektora, jak również jest ona w pełni ekranowana od wpływu warstwy tlenku zagrzebanego, który może gromadzić znaczący ładunek elektryczny, jako wynik przyjęcia przez detektor niszczącej dawki promieniowania jonizującego. Szacowana niezbędna grubość warstwy SOI powinna wynosić nie mniej niż 500 nm. Skutkiem ewentualnego przyjęcia takiej zmiany procesu technologicznego byłoby istotne, a co za tym idzie, bardzo kosztowne, przestawienie linii technologicznej. Wobec tego ostatniego faktu, mimo że proponowane rozwiązanie skutecznie odnosi się do problemu pojemnościowego sprzężenia układu elektronicznego z detektorem, nie została podjęta pozytywna decyzja o jego wdrożeniu.

Rys. 9.28 Struktura detektora SOI wytworzonego w procesie z grubą warstwą kruszku na warstwie tlenku zagrzebanego.

W konsekwencji konieczne stało się zaproponowanie takiej modyfikacji procesu technologicznego, która z jednej strony byłaby skuteczna, aby detektor i stowarzyszony z nim elektroniczny układ odczytowy przestały się wzajemnie sprzęgać, a z drugiej strony nie wymagałaby fundamentalnych zmian w samym procesie wytwarzania tranzystorów.

9.5.2. Wprowadzenie zagnieżdżonych studni BNW i BPW

Struktura zagnieżdżonych studni BNW i BPW została zaproponowana przeze mnie w odpowiedzi na niezaprzeczalną potrzebę uzupełnienia procesu technologicznego o skuteczną metodę ekranowania. Wypracowany pomysł nie jest idealny, gdyż nie daje odpowiedzi na możliwą modulację punktów pracy tranzystorów w wyniku ewentualnej akumu-
lacj ładunków w grubej warstwie tenku zagrzebanego w trakcie procesu technologicznego oraz w wyniku działania promieniowania jonizującego. Jednakże nie niesie ze sobą zmian samego procesu technologicznego dla układu scalonego ani nie wymaga zmian grubości żadnej warstwy, co pozwala zachować pierwotną metrologię na linii technologicznej⁴³. W ten sposób osiągnięty jest cel minimalizacji kosztów. Natomiast konsekwencje akumulacji ładunku w warstwie tenku zagrzebanego mogą być sprowadzone do skali drugorzędnej, w szczególności dla promieniowania niskoenergetycznego, w przypadku użycia grubej warstwy podłoża detektora pracującego w pełnym zubożeniu przy ekspozycji od spodu detektora. Główną modyfikacją oryginalnego procesu jest wprowadzenie dodatkowej zagrzebanej studni typu N, leżącej bezpośrednio poniżej warstwy tenku zagrzebanego. Studnia BNW, po połączeniu do niskoimpedancyjnego źródła napięcia stałego, pełni właśnie rolę ekranu separującego układ elektroniczny od detektora. Z tego powodu, że materiał detektora jest typu N, studnia BNW nie może być osadzona bezpośrednio w podłożu, lecz musi być w całości otoczona przez głębszą od niej studnię BPW⁴⁴. W ten sposób można wytworzyć pole elektryczne w detektorze poprzez przyłożenie odpowiedniego napięcia polaryzacji pomiędzy spodem detektora a studnią BPW. Ładunek powstały w procesach oddziaływania promieniowania z detektorem może być zbierany przez studnię BPW połączoną z wejściem wzmacniacza, a studnia BNW skutecznie zamyka wszelkie sprzeczności do niskiej impedancji. Poglądowa ilustracja wprowadzenia warstwowej struktury zagnieźdzonych studni BNW i BPW jest przedstawiona na Rys. 9.29.

Rys. 9.29 Struktury zagnieźdzonych studni BNW i BPW; studnia BPW łączy się bezpośrednio z wejściem wzmacniacza, a studnia BNW stanowi elektrodę zamykającą sprzężenia od układu elektronicznego do węża niskiej impedancji.

⁴³ Zachowanie pierwotnej metrologii na linii technologicznej i uniknięcie kosztownego ekstrahowania nowych modeli tranzystorów było warunkami narzuconymi przez przedstawicieli przemysłu, pod którymi to warunki wprowadzenie zmian do procesu technologicznego było możliwe.

⁴⁴ Jest oczywiste, że struktura zagnieźdzonych studni może być komplementarnie odwrócona w przypadku użycia materiału typu P na podłoże detektora. Rzeczywiście, propozycja takiej wersji została poddana pod rozważenie, jako wariant implementacji struktury zagnieźdzonych studni, jednakże ideowo jest ona tożsama ze strukturą pierwotną i dlatego opis struktury komplementarnej nie został w tym miejscu ujęty.
Zamierzony efekt zagnieźdzonych warstw może być osiągnięty przez kilkustopniowe implantacje jonów fosforu i boru o odpowiednio dobranych energiach i dawkach. Dobór szczegółów przepisu technologicznego wytwarzania struktury zagnieźdzonych studni BNW i BPW został przeprowadzony przy użyciu środowiska symulacyjnego SILVACO [120], które zawiera narzędzia do symulacji przebiegu procesu technologicznego (ATHENA), jak również symulacji elektrycznej uzyskanej struktury (ATLAS) w dwu- i trójwymiarowej reprezentacji struktury. Ważnym elementem analizy było także dobrawarunków implantacji, odbywającej się przez warstwę tlenku zagrzebanego z leżącą na niej cienką warstwą krzemu przeznaczoną na elektronikę, aby nie naruszyć warunków produkcji i parametrów tranzystorów. Przykład wyniku przeprowadzonej symulacji kroków procesu technologicznego, ukazujący wytworzenie dwóch sąsiednich pikseli, jest przedstawiony na Rys. 9.30. Pokazane zostały obszary dwóch sąsiednich pikseli o wymiarach 20 μm. Przedstawioną wielkością jest koncentracja netto domieszkowania. Wielkości energii, uwidocznione na Rys. 9.30, oznaczają orientacyjne energie implantacji jonów. Szczegółowa informacja o warunkach implantacji wybranych do pierwszej realizacji praktycznej w warunkach umowy z partnerem przemysłowym podana jest w tabeli 9.2. Dobór tych warunków jest wynikiem odpowiednich kompromisów. Przykładem takiego kompromisowego ustalenia jest wybór 500 keV energii do osadzenia implantacji typu P leżącej poniżej BNW.

Rys. 9.30 Wynik symulacji części procesu do wytworzenia zagnieźdzonych studni BNW i BPW.

Celem minimalizacji pojemności pomiędzy BNW i BPW korzystne byłoby osadzenie tej implantacji jak najbliżej przy użyciu energii implantacji jonów przekraczającej 500 keV. Jednakże głębsza penetracja jonów wiąże się z powiększającym się zakresem ich rozprzestrzenienia, co mogłoby prowadzić do zwierania sąsiednich głębokich implantacji typu P, a co za tym idzie, do sprzeczności pomiędzy pikselami. Dlatego ewentualną decyzję o po-
większeniu energii implantacji pozostawiono na przyszłość, uzależniając ją od wniosków uzyskanych z charakterystyki z pierwszej realizacji praktycznej.

Kolejnym ważnym kompromisem był wybór dawki i energii implantacji studni BNW. Celem wytworzenia jak najbardziej wydajnego ekranu dawka implantacji jonów fosforu powinna być jak największa, a jednocześnie sama implantacja powinna być osadzona jak najmniej. Ten drugi wymóg wynika z dążenia do obniżenia pojemności złączowej do obszaru BNW. Pojemność ta jest widziana przez wzmacniacz ładunkowy jako jego pojemność wejściowa, odbijając się niekorzystnie na jego charakterystyce szumowej. Przeciwwskazaniem dla dużej dawki implantacji i jak najmniejszego umiejscowienia studni BNW jest możliwość doprowadzenia do zmiany rezystywności cienkiej warstwy krzemu, przez którą dokonywane są wszystkie implantacje. Zmiana rezystywności tej warstwy, będącej wyjściową dla wytwarzania tranzystorów, mogłaby skutkować tak znaczącą dewiacją ich charakterystyk, że istniejące modele SPICE stałyby się bezużyteczne.

Budowa nowych zestawów modeli, ewentualnie duże zmiany procesu technologicznego, aby istniejące modele mogły być wciąż użyteczne, ze względu na związane z tym koszty były niedopuszczalne. Zgodzono się dlatego na drugi kompromis polegający na tym, że zrezygnowano z podnoszenia dawki implantacji głębokiej studni typu N dla uniknięcia konieczności ekstrakcji nowych modeli tranzystorów. W związku z tym nie było pewne, czy studnia BNW, uzyskana w wyniku implantacji z energią 300 keV i dawką 1×10^{12} cm$^{-2}$, będzie posiadać odpowiednio niską rezystywność do skutecznego ekranowania warstwy zawierającej układy elektroniczne i detektora.

Tabela 9.2
Podsumowanie warunków implantacji dla otrzymania struktury zagnieźdzonych studni BNW/BPW

<table>
<thead>
<tr>
<th>Implantacja / warstwa</th>
<th>Przeznaczenie warstwy</th>
<th>Przepis implantacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Kontakt typu N</td>
<td>$^{31}\text{P}^+$, 30 keV, 5×10^{15} cm$^{-2}$</td>
</tr>
<tr>
<td>BNW</td>
<td>Implantacja studni ekranującej typu N</td>
<td>$^{31}\text{P}^+$, 300 keV, 1×10^{12} cm$^{-2}$</td>
</tr>
<tr>
<td>PS</td>
<td>Kontakt typu P</td>
<td>$^{11}\text{B}^+$, 40 keV, 5×10^{15} cm$^{-2}$</td>
</tr>
<tr>
<td>BPW*</td>
<td>Najpłynsza implantacja typu P</td>
<td>$^{11}\text{B}^+$, 100 keV, 1×10^{12} cm$^{-2}$</td>
</tr>
<tr>
<td>BP3</td>
<td>Pośrednia implantacja typu P</td>
<td>$^{11}\text{P}^+$, 220 keV, 1×10^{12} cm$^{-2}$</td>
</tr>
<tr>
<td>BP2</td>
<td>Głęboka implantacja typu P poniżej BNW</td>
<td>$^{11}\text{B}^+$, 500 keV, 1×10^{12} cm$^{-2}$</td>
</tr>
</tbody>
</table>

* Nazwy BPW, BP3 i BP2 wynikają ze względów historycznych, tj. z czasu przed wprowadzeniem struktury studni zagnieźdzonych, kiedy proces charakteryzował się jedną studnią BPW o takich samych warunkach implantacji. Odnoszą się one nomenklaturą wprowadzoną do pliku technologicznego firmy OKI/LAPIS Semiconductor. W pracy jednak postanowiono kontynuować używanie nazwy BPW dla głębokiej implantacji leżącej poniżej BNW.

Celem zilustrowania siatki osiągalnych parametrów struktury zagnieźdzonych studni BNW i BPW w zależności od energii i dawki implantacji obszarów BNW i BPW, wybrane wyniki symulacji wykonanych w środowisku SILVACO zostały zgrupowane w tabeli 9.3. Jako reprezentatywne wyniki analiz zostały wybrane dwa parametry, tj. ekwiwalentna rezystancja płytki BNW o wymiarach bocznych (25×25) μm2 i grubość warstwy zułożonej BNW–BPW, co się przekłada na pojemność pasożytniczą obszaru o wymiarach.
(100×100) \(\mu m^2\) przy wstecznym napięciu 1 V polaryzującym złącze BNW–BPW. Założenie do analizy rozmiarów obszaru BNW o wymiarach (25×25) \(\mu m^2\) przyjmuje odpowiadającą tej geometrii gęstość rozmieszczenia kontaktów podtrzymujących niskoimpedancyjne przyłączenie tego obszaru do źródła napięcia stałego. Natomiast wielkość (100×100) \(\mu m^2\) odpowiada typowemu rozmiarowi piksela zawierającego odpowiednio rozbudowaną strukturę układu przetwarzania sygnału z detektora. W tabeli zaznaczono żółtym kolorem wyniki otrzymane dla warunków implantacji z tabeli 9.2, które zostały wybrane dla pierwszej praktycznej realizacji struktury wspólnie z inżynierami z firmy OKI/LAPIS Semiconductor Co. Wyniki osiągniętej grubości warstwy zbożonej złącza BNW–BPW zostały przedstawione w tabeli 9.3 jedynie dla jednej energii implantacji BNW, tj. wynoszącej 300 keV. Zmianom poddano jedynie koncentrację domieszek w obszarze bocznej implanacji typu P, leżącej poniżej głębokiej struktury BNW.

Tabela 9.3

Siatka parametrów zagnieżdżonych studni BNW/BPW w zależności od energii i dawk implantacji.

<table>
<thead>
<tr>
<th>Koncentracja P w BNW / dawka</th>
<th>Grubość BNW / energia implantacji</th>
<th>Ekwivalentna rezystancja (płytka o wymiarach bocznych 25×25 (\mu m^2))</th>
<th>Koncentracja B w BPW</th>
<th>Grubość warstwy zbożonej BNW–BPW / pojemność 100×100 (\mu m^2) przy 1 V pomiędzy BNW i BPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^16 \text{ cm}^{-3}) / (10^11 \text{ cm}^{-2})</td>
<td>150 nm / 200 keV</td>
<td>35 k(\Omega)</td>
<td>(10^{15}) (\text{cm}^3)</td>
<td>1,548 (\mu m) / 0,68 p(\text{F})</td>
</tr>
<tr>
<td></td>
<td>200 nm / 200 keV</td>
<td>26 k(\Omega)</td>
<td>(10^{16}) (\text{cm}^3)</td>
<td>0,672 (\mu m) / 1,56 p(\text{F})</td>
</tr>
<tr>
<td></td>
<td>250 nm / 200 keV</td>
<td>21 k(\Omega)</td>
<td>(10^{17}) (\text{cm}^3)</td>
<td>0,507 (\mu m) / 2,08 p(\text{F})</td>
</tr>
<tr>
<td>(10^17 \text{ cm}^{-3}) / (10^12 \text{ cm}^{-2})</td>
<td>150 nm / 200 keV</td>
<td>5,8 k(\Omega)</td>
<td>(10^{15}) (\text{cm}^3)</td>
<td>1,510 (\mu m) / 0,69 p(\text{F})</td>
</tr>
<tr>
<td></td>
<td>200 nm / 200 keV</td>
<td>4,3 k(\Omega)</td>
<td>(10^{16}) (\text{cm}^3)</td>
<td>0,506 (\mu m) / 2,08 p(\text{F})</td>
</tr>
<tr>
<td></td>
<td>250 nm / 200 keV</td>
<td>3,5 k(\Omega)</td>
<td>(10^{17}) (\text{cm}^3)</td>
<td>0,219 (\mu m) / 4,79 p(\text{F})</td>
</tr>
<tr>
<td>(10^18 \text{ cm}^{-3}) / (10^13 \text{ cm}^{-2})</td>
<td>150 nm / 200 keV</td>
<td>1,5 k(\Omega)</td>
<td>(10^{15}) (\text{cm}^3)</td>
<td>1,529 (\mu m) / 0,70 p(\text{F})</td>
</tr>
<tr>
<td></td>
<td>200 nm / 200 keV</td>
<td>1,1 k(\Omega)</td>
<td>(10^{16}) (\text{cm}^3)</td>
<td>0,494 (\mu m) / 2,13 p(\text{F})</td>
</tr>
<tr>
<td></td>
<td>250 nm / 200 keV</td>
<td>0,9 k(\Omega)</td>
<td>(10^{17}) (\text{cm}^3)</td>
<td>0,165 (\mu m) / 6,36 p(\text{F})</td>
</tr>
</tbody>
</table>

* Na żółto zaznaczono wyniki uzyskane dla warunków implantacji z tabeli 9.2.

W wyniku mojej współpracy z inżynierami z firmy OKI/LAPIS Semiconductor, po uzgodnieniu warunków implantacji dla otrzymania struktury zagnieżdżonych studni BNW/BPW, zostały przygotowane odpowiednie zmiany do pliku technologicznego oraz zostały wypracowane odpowiednie reguły projektowe umożliwiające projekt masek i wery-

171
fikację poprawności projektu (ang. Design Rules Checking – DRC) przy użyciu standardowego oprogramowania. Przekrój przez strukturę detektora z zagnieżdżonymi studniami BNW i BPW, ukazujący schematycznie trzy sąsiednie piksele, jest przedstawiony na Rys. 9.31. Na tym rysunku w sposób poglądowy wykreślone są maski konieczne w kolejnych kilku etapach implantacji oraz wynik tych implantacji. Kontakty do wytworzonych zagnieżdżonych studni są zaznaczone odpowiednio kolorem zielonym do polaryzacji studni BNW i kolorem czerwonym do odbioru sygnału ze studni BPW. Na Rys. 9.31 zaznaczono również wybrane symbole wymiarów i odstępów, które konieczne są do dodania do podstawowych reguł projektowych procesu technologicznego uwzględniającego zagnieżdżone studnie dla projektowania masek. Minimalny odstęp pomiędzy dwoma sąsiednimi ze sobą studniami BPW, d1, został ustalony na 3 μm w wyniku dyskusji na bazie symulacji.

Rys. 9.31 Przekrój przez strukturę detektora (trzy sąsiednie piksele) pokazujący schematycznie maski użyte w kilku etapach implantacji oraz wynik tych implantacji tworzący zagnieżdżone studnie wraz z rozmieszczonymi odpowiednio kontaktami do polaryzacji studni BNW oraz odbioru sygnału ze studni BPW.

9.5.3. Projekt i testy pierwszego układu MAMBO wykorzystującego system zagnieżdżonych studni BNW i BPW

Zag nieżdżone studnie BNW i BPW zostały wprowadzone jako nowe, dodatkowe elementy ulepszonego procesu SOI do budowy monolitycznych detektorów pikselowych. Celem eksperymentalnej weryfikacji formuły nowej metody odizolowania warstwy zawierającej układy elektroniczne od detektora została zaprojektowana nowa wersja układu MAMBO IV. Układ ten zawiera matrycję 50×52 piksele, których rozmiary wynoszą (105×105) μm². Zauważalny wzrost wymiarów piksela wynika z dołożenia buforów analo-
gowych i cyfrowych w każdym pikselu oraz konwerterów cyfrowo–analogowych do korekcji rozrzutów napięć progowych dyskryminatorów. Bufory spełniają rolę wyłącznie testowe, pozwalając na bezpośredni podgląd indywidualnych sygnałów z każdego piksela. Zajmują one ponad 25% powierzchni piksela. Nie są one konieczne do implementacji w ostatecznej wersji układu, zatem obecny rozmiar piksela jest większy od koniecznego. Ceną płaconą za większy rozmiar piksela jest zwiększenie pojemności widzianej na wejściu pierwszego stopnia wzmacniającego do około 2pF, zgodnie z informacją zawartą w tabeli 9.3. Całkowite wymiary nowego układu scalonego wynoszą (6×6) mm². Każdy piksel zawiera część analogową, którą jest, podobnie jak w poprzednim prototypie, dwustopniowy układ wzmacniający–filtrujący podłączony do układu odzyskiwania składowej stałej. Ze względu na znacząco podniesioną wartość pojemności widzianej z wejścia pierwszego stopnia wzmacniającego, prosty układ wzmacniający, który był uprzednio pojedynczym transzystorem pracującym w konfiguracji wspólnego źródła, został zastąpiony złożeniem regulowanej kaskady z dodatkowym prądem kaskady teleskopowej, podwyższającym transkonduktancję transzystora wejściowego. W ten sposób osiągnięto wysokie wzmocnienie w otwartej pętli, co pozwalało na pracę z niewielką pojemnością w sprzężeniu zwrotnym pierwszego stopnia, która to została zwiększona tylko nieznacznie względem wcześniejszych projektów do 14 fF. Schemat ideowy zmodyfikowanego układu pierwszego stopnia wzmacniającego jest przedstawiony na Rys. 9.32. Układ regulowanej kaskody zbudowany jest w oparciu o tranzystory M_{ac10} i M_{ac8}, natomiast dodatkowy prąd polaryzacji tranzystora wejściowego pochodzi z tranzystora M_{ac6}.

Celem dopasowania składowych stałych napięć na wejściu pierwszego stopnia wzmacniającego i filtru kształtującego, w strukturze filtru kształtującego został użyty odpowiednio przeskalowany układ regulowany kaskady z dodatkowym prądem poprawiającym transkonduktancję. Nowy układ filtru kształtującego wykorzystuje transkonduktancję 6,5 μS tranzystora wejściowego, która wraz z pojemnością sprzężenia zwrotnego o wielkości 4 fF, aktywną rezystancją sprzężenia zwrotnego o wartości 28 MΩ i obciążeniem filtra pojemnością o wielkości 45 fF skutkuje uzyskaniem odpowiedzi o czasie τ_p, w którym osiągane jest
maksimum przebiegu, wynoszącym około 150 ns. Filtr kształtujący jest sprzężony z pierwszym stopniem za pośrednictwem pojemności o wielkości 140 fF, a z układem odzyskiwania składowej stałej za pośrednictwem pojemności o wielkości 700 fF. Ze względu na ponad dziesięciokrotnie większą pojemność, widzianą z wejścia pierwszego stopnia wzmocniania, obecną w strukturze z zagnieźdzonymi studniami BNW i BPW w stosunku do struktury bez ekranowania, konieczne było zwiększenie prądu polaryzacji w transzystorach wejściowych w pierwszym stopniu wzmocniania do 6 μA\(^45\) i w konsekwencji również proporcjonalnie w filtrze kształtującym.

Część cyfrowa piksela jest tylko niezależnie zmodyfikowana względem wcześniejszych realizacji. Zawiera ona komparator okienkowy, z dolnym i górnym progiem dyskryminacji, zbudowany przy użyciu dwóch dyskryminatorów, których napięcia niezrównoważenia mogą być niezależnie korygowane za pomocą prostych, prądowych przetworników cyfrowo-analogowych, kontrolowanych przez słowa czerobitowe. Zdarzenia pochodzące od oddziaływania promieniowania z detektorem są rejestrowane przez dwunastobitowy licznik, który jest rekonfigurowalny do formy rejestru przesuwnego, w celu umożliwienia szeregowego odczytu danych z całego detekta. Piksel zawiera analogowy bufor o wzmocnieniu jednostkowym i cyfrowy bufor, które umożliwiają w trybie testowym podgląd odpowiednio wyjścia filtra kształtującego i wyjść komparatorów z każdego piksela. Tryb pracy wyrabiany jest pomiędzy dostępnymi trybami, takich jak: praca normalna, podgląd analogowy, podgląd cyfrowy, kalibracja, piksel włączony, przez programowalny szeregowo rejestr konfigurujący. Rejestr konfigurujący zawiera również ustawienia przetworników korygujących napięcia niezrównoważenia dyskryminatorów. Całość układu elektronicznego umieszczona jest ponad studnią BNW zgodnie z poglądowym schematem przedstawionym na Rys. 9.31. Zewnętrzny wymiar studni BPW wynosi 105 μm i odległość pomiędzy studniami BPW z sąsiadnymi pikseli wynosi 3 μm.

Nowe układy detektorów zostały wykonane na dwóch typach podłoży, tj. o rezystywności 1 kΩcm i 7,1 kΩcm\(^46\). Otrzymane urządzenia zostały poddane testom, które były skoncentrowane, po pierwsze, na sprawdzeniu, czy dodatkowe kroki technologiczne, wynikające z implementacji zagnieźdzonych studni BNW i BPW, nie prowadzą do pogorszenia parametrów materiału detektorów, i po drugie, na sprawdzeniu skuteczności ekranowania przy pomocy studni BNW oraz ostatecznie na sprawdzeniu funkcjonowania całego układu elektronicznego detektorów. Na podkreślenie zasługuje fakt, że dwa pierwsze rodzaje testów zostały wykonane na układzie z podziałem na piksele z pełni wykonaną elektroniką, a nie na uproszczonej strukturze testowej. Dzięki temu wyniki tych testów są miarodajne i wolne od błędów, do jakich może prowadzić wykonywanie tych testów na strukturach testowych, np. podczas mierzenia prądu upływu detekcory przez użyciu jednolitej, o dużej powierzchni implantacji, diody.

Jak widać na Rys. 9.32, dostęp do anody diody tworzącej detektor (wejście in_det), może być uzyskany, kiedy sygnał zasilania vdda i gnda zostaną ze sobą zwarte, a tranzystor M\(_{\text{ag}}\) zostanie użyty jako klucz. Po spolaryzowaniu bramki tego tranzystora znacząco pośrednictwem połączonych terminali vdda i gnda można łatwo dokonać pomiarów prądu

\(^{45}\)Jako cel przyjęto wykazanie skutecznej implementacji zagnieźdzonych studni BNW i BPW, decydując się na pozostawienie na drugim planie optymalizacji osiągów układu elektronicznego, szczególnie względem poboru mocy. Zmniejszono również wzmocnienie toru analogowego i zdecydowano się na korekcję napięć niezrównoważenia komparatorów.

\(^{46}\)Rezystywności podane za producentem.
upływu detektora i zależności pojemności detektora w funkcji napięcia polaryzacji wstecznej. W tym celu wystarczy włączyć instrument pomiarowy pomiędzy terminal utworzony ze zwarcia szyn zasilania a podłoże detektora oraz, mające odklejone pola kontaktowe, pierścienie osłaniające. Pomiary wykonane dla obydwu rezystywności podłoża, osiągając po-dobne wnioski. Przedstawienie wyników zdecydowanie jednak ograniczyć jedynnie do podłoża o wysokiej rezystywności. Grubość detektorów zmierzono optycznie przy użyciu mikroskopu o wysokiej rozdzielczości, uzyskując wartość 485 μm dla układu na podłożu wysokorezystywnym. Wynik pomiaru prądu upływu detektora przedstawiony jest na Rys. 9.33. Spodziewane pełne zużycie detektora powinno zachodzić przy napięciu polaryzacji wstecznej wynoszącym około 100 V. Detektor można było spolaryzować napięciem znacząco powyżej napięcia pełnego zużycia i otrzymać prąd upływu w przeliczeniu na jednostkową powierzchnię wynosił około 800 nA/cm² w pobliżu pełnego zużycia.

Rys. 9.33 Prąd upływu detektora na podłożu wysokorezystywnym (float–zone) o grubość 485 μm.

W kolejnym kroku wykonano pomiary zależności pojemności detektora w funkcji napięcia polaryzacji wstecznej. Przykładowy wynik takiego pomiaru dla układu na podłożu wysokorezystywnym jest pokazany na Rys. 9.34. Przedstawienie odwrotności pojemności podniesionej do kwadratu pozwala na łatwe odczytanie z wykresu wartości napięcia pełnego zużycia. Oszacowana wartość, nieznacznie przekraczająca 100 V, odpowiada wartości oczekiwanej dla rezystywności podanej przez producenta. Korzystając z charakterystyki pojemności złączowej, można wyliczyć koncentrację domieszek w funkcji głębokości [121]. Dla dokładności tego wyliczenia, bez stosowania skomplikowanych korekcji, konieczne jest spełnienie przez strukturę kilku warunków, z których najważniejszy wymaga, aby długość boku okładek kondensatora utworzonego przez detektor była wielokrotnie większa od grubości detektora. W przypadku rozważanej struktury warunek ten można uznać za spełniony. Koncentracja domieszek dla detektora na podłożu wysokorezystywnym, wyliczona z pomiarów zależności pojemności detektora w funkcji napięcia polaryzacji wstecznej, jest pokazana na Rys. 9.35. Na profilu efektywnej koncentracji donorów wyraźnie widać zaznaczający się wzrost koncentracji na głębokości od kilkuǳiesięciu mikrometrów do około 100 μm. Na pozostałym zakresie profil koncentracji jest jednorodny i zgodny z oczekiwaną rezystywnością materiału detektora. Wzrost koncentracji na niewielkich głębokościach może być przypisywany zwiększonej koncentracji tlenu w tym obszarze. Efekt taki był obserwowany we wcześniejszych pracach poświęconych detektorom wykorzystującym podłoże SOI [122].
Zatem również z uwagi na to, że obserwowany wzrost nie jest znaczący, nie można go przypisać degradacji ze względu na implementację struktury zagnieźdzonych studni. Przeprowadzone testy, charakteryzujące podłożo detektora, nie wykazały wpływu dodatkowych kroków technologicznych na jakość materiału detektora.

Rys. 9.34 Pomiar zależności pojemności detektora w funkcji napięcia polaryzacji wstecznej dla układa na podłożu wysokorezystywnym (float–zone) o grubości 485 μm.

W kolejnym etapie testów sprawdzono odstęp, jaki powinien być zachowany pomiędzy dwoma sąsiadnimi obszarami studni BPW, aby poszczególne piksele zachowywały swoją odrębność. W tym celu posłużono się dedykowaną strukturą testową składającą się z kilku zestawów par wąskich obszarów BPW o długości 100 μm. Obszary BPW z każdej pary leżały tak, że dzieliły je od siebie przerwa z zakresu od 1,2 μm do 10 μm. Wygląd struktury testowej do pomiaru separacji pomiędzy dwoma sąsiadnymi obszarami zagnieżdzonych studni jest przedstawiony na Rys. 9.36a. Rezystancja pomiędzy dwoma sąsiednimi studniami była mierzona za pomocą miernika impedancji (ang. LCR meter) dla różnych częstotliwości i przy bardzo małe amplitudzie sygnału zmiennoprądowego wynoszącej 10 mV. W czasie pomiaru obydwu, sąsiednie obszary studni BPW były spolaryzowane na tym samym potencjale stałym 0 V, natomiast zmieniana była polaryzacja wsteczna detektora.

Rys. 9.35 Koncentracja domieszek dla detektora na podłożu wysokorezystywnym (float–zone) o grubości 485 μm.
W wyniku przeprowadzonych pomiarów wykazano, że zachowanie odstępów co najmniej 3 μm pomiędzy sąsiednimi studniami skutkuje bardzo wysoką rezystancją, a co za tym idzie, skutecznym odseparowaniem sąsiednich pikseli. Wyniki pomiarów rezystancji wykonanych na strukturze testowej jest pokazany na Rys. 9.36b. Rezystancja pomiędzy paszkami o długości 100 μm znacząco przekracza 100 kΩ. Jest to maksymalna wartość, jaka była mierzalna za pomocą miernika impedancji używanego w pomiarach.

Rys. 9.36 Struktura testowa do pomiaru: separacji pomiędzy dwoma sąsiednimi obszarami zagłębleńnych studni a), wyniki pomiarów rezystancji wykonanych na strukturze testowej b).

Pomiary wydajności ekranowania tranzystorów przez układ zagłębleńnych studni zostały wykonane na kilku tranzystorach NMOS i PMOS, które były przygotowane w strukturach testowych na peryferiach układu. Wygląd struktury testowej do pomiaru ekranowania tranzystorów jest przedstawiony na Rys. 9.37. Detektor był polaryzowany napięciem wstecznym z zakresu od 10 V do 100 V i nie obserwowano żadnych zmian prądów kanałów przy danym stałym potencjale studni BNW. Jednakże, zgodnie z oczekiwaniami, przy zmianie stałego potencjalu studni BNW charakterystyki przejściowe tranzystorów były przesunięte na skalę napięcia bramka–źródło o wartość odpowiadającą stopniowi modyfikacji napięcia progowego. Przeprowadzone pomiary wykazały, że efekt wpływu detektora na charakterystyki tranzystorów został skutecznie zniwelowany przez implementację zagłębleńnych studni BNW i BPW.

Rys. 9.37 Struktura testowa do ekranowania tranzystorów od wpływu detektora.

W ostatnim etapie testów skupiłem się na scharakteryzowaniu i sprawdzeniu działania układu elektronicznego. Najpierw dokonałem kalibracji komparatorów okienkowych przy niezasłanej analogowej części toru sygnału, pozostawiając jedynie pracujący układ odzyskiwania składowej stałej. Wszystkie pikselowe odpowiadają na korekcję poziomu wyzwala-
nia i z początkowego względu wysokiego poziomu rozzurów napięć niezrównoważenia, tj. ±120 mV (jedno odchylenie standardowe), możliwa była redukcja rozzurów do mniej niż ±10 mV, przy odpowiednim doborze ustawienia czterobitowych przetworników cyfrowo–analogowych. Po ustaleniu, indywidualnie dla każdego piksela, kodów dla przetworników cyfrowo–analogowych niwelujących napięcia niezrównoważenia komparatorów, uaktywniono prądy polaryzacji w części analogowej i podjęto próbę rejestracji obrazów radiogramowych przy ekspozycji na źródło ¹⁰⁹Cd. Niestety, okazało się, że przy zwiększaniu napięcia polaryzacji detektora powyżej kilku woltów pewna liczba pikseli zaczynała zachowywać się niestabilnie, wchodząc w oscylacje. Ustalono, że liczba niestabilnych pikseli wzrasta wraz ze zwiększaniem napięcia polaryzacji detektora. Przy napięciu polaryzacji detektora nieprzekraczającym 2 V układ zachowywał się stabilnie i w takich warunkach zarejestrowano obrazy radiogramowe, które są przedstawione na Rys. 9.38a i Rys. 9.38b.

Pierwszy obraz został uzyskany przy całkowitej, jednorodnej iluminacji powierzchni detektora (ang. flat field), drugi po połóżeniu na detektor niewielkiej maski o rozmiarach (1,9×1,9) mm² i grubości 1 mm, wykonanej z wolframu. W obu przypadkach ekspozycja była krótki, kilkuminutowa. Obszar na krawędziach dolnej i prawej nie był wystawiony na źródło radioaktywne, gdy przysłonięty przez płytę drukowaną, na której został zamontowany detektor do testów. Brak zliczeń w obszarze przysłoniętym maską świadczy o osiągniętym celu i poprawności pracy detektora. Jednakże niemożność bezpiecznego zwiększenia napięcia polaryzacji detektora wskazywała na konieczność przeprowadzenia szczegółowej analizy przyczyny wzbudzania się układu. Po podłączeniu wyjścia filtra kształtującego z dowolnie wybranego piksela poprzez bufor analogowe na przewidziane do tego celu pole kontaktové i obserwacji sygnałów na oscyloskopie można było wyraźnie zauważyć przejście od stabilnej pracy, gdy kształty odpowiedzi na wymuszenie były prawidłowe, do oscylacji przy większym napięciu polaryzacji detektora.

Rys. 9.38 Przykład obrazów radiogramowych uzyskanych przy użyciu źródła ¹⁰⁹Cd, iluminacja całkowitej powierzchni detektora z wyjątkiem obszaru na dwóch krawędziach, przysłoniętego przez płytę drukowaną a), obraz niewielkiej maski o rozmiarach (1,9×1,9) mm² i grubości 1 mm wykonanej z wolframu b).

W wyniku przeprowadzonej analizy znalazłem drogę sprzężenia zwrotnego, wynikającego z rezystywności studni BNW. Sygnał z wyjścia toru wzmacniającego, którym jest wyjście filtra kształtującego, może przemieszać w fazie na jego wejściu. Sprzężenie pomiędzy filtrem kształtującym a układem odzyskiwania składowej stałej wykorzystuje pojemność

178
zrealizowaną na zubożonym tranzystorze M_{C_2}, którego napięcie progowe jest niższe od 0 V. Dolna okładka tego tranzystora przyłącza zę do układu odzyskiwania składowej stałej i jednocześnie spręża się pojemnościowo przez warstwę tlenku zagrzebanego ze studnią BNW. Wielkość tej pojemności sprężającej można oszacować na około 25 fF, wyliczając ją z zależności geometrycznych. Całkowite przesunięcie fazowe w zakresie sygnałów z pasma przenoszenia, dla połączonych ze sobą pierwszego stopnia wzmacniającego i filtru kształtującego, wynosi 360$^\circ$. Zatem do spełnienia warunków wzbudzenia wystarcza, aby tylko nieznaczną część sygnału z wyjścia filtra kształtującego została przeniesiona na wejście toru. Droga przenikania sygnału wraz z zaznaczonymi pojemnościami i rezy- stancjami pasożytycznymi do oszacowania transmitancji toru niepożądanej sprzężenia zwrotnego jest pokazana na Rys. 9.39.

![Rys. 9.39 Ilustracja drogi sprzężenia zwrotnego, którym sygnał z wyjścia toru wzmacniającego może przenikać na jego wejście.](image)

Jeśli rezystancja studni BNW, R_{BNW}, nie jest wystarczająco niska, to sygnał, który prze- nika do studni BNW, może dalej dotrzeć do wejścia wzmacniacza poprzez dzielnik pojem- nościowy $C_{BNW-BPW}/C_{det}$. Jest to dodatkowo ułatwione, dle tego że pojemność złącza BNW–BPW jest dużo większa od pojemności detektora, C_{det}. Jednakże ta ostatnia zależy od napięcia polaryzacji detektora, co powoduje, że do wzbudzania dochodzi jedynie po przekroczeniu wartości progowej napięcia polaryzacji detektora, kiedy pojemność detektora odpowiednio zmniejszy się. Przeprowadzona analiza pozwoliła mi wyznaczyć wartość rezystancji R_{BNW} na około 1 kΩ jako wystarczającą do spowodowania niestabilności układu. Spostrzeżenie to skutkuje konkluzją, że na potrzeby produkcji następców testowanego układu MAMBO konieczne jest zmodyfikowanie warunków implantacji studni BNW – w taki sposób, żeby obniżyć jej rezystancję. Jednocześnie projekt masek piksela powinien uwzględniać większą liczbę kontaktów do studni BNW oraz zapewniać jeszcze bardziej niskoimpedancyjną dystrybucję napięcia polaryzacji tej studni.

Przeprowadzone do tej pory testy układu MAMBO wykazały, że wchowanie układu w warunki wzbudzenia jest na granicy spełnienia warunku generacji. Pozwala to sądzić, że w takim przypadku zmniejszenie wzmocnienia otwartej pętli powinno skutkować ustabili- zowaniem układu i umożliwieniem pracy detektora w warunkach znacznego lub pełnego zubożenia jego objętości aktywnej. W związku z tym, że, niestety, ten analogowy nie jest wyposażony w możliwości regulacji pozwalających na zmianę wzmocnienia napięciowego bez wpływu na kształt odpowiedzi czasowej, postanowiono obniżyć napięcie zasilania analogowego z 1,8 V do 0,975 V tak, aby tranzystor kaskady M_{ac} ze schematu przedsta-
wionego na Rys. 9.32 został wypchnięty z nasycenia do obszaru liniowego, skutkując istotnym zmniejszeniem wzmocnienia napięciowego pierwszego stopnia wzmacniającego w otwarcie pętli. Dobierając odpowiednio napięcie zasilania komparatorów na 1,2 V oraz odpowiednio do zmiany napięcia analogowego z 1,8 V na 0,975 V przesuwając pozostałe napięcia polaryzujące stopnie kaskadowe w układzie, uzyskano poprawną pracę detektora. Efektem ubocznym był jednak znaczny spadek amplitudy odpowiedzi czasowej na impulsy ładunkowe pochodzące z detektora. Przykład obrazu radiogramowego zarejestrowanego w nowych warunkach polaryzacji układu elektronicznego dla znacznie większego napięcia polaryzacji detektora wynoszącego 10 V, dającego głębokość zużożenia ponad 100 μm jest pokazany na Rys. 9.40.

Podsumowując, można uznać, że proces oferowany przez OKI/LAPIS Semiconductor, uzupełniony o zaproponowane przez mnie zmiany w postaci zagniezionej studni BNW i BPW, jest istotnym krokiem w kierunku rozwoju nowej generacji monolitycznych detektorów pikselowych. Główna zaletą podejścia z wykorzystaniem technologii SOI w stosunku do klasycznych detektorów MAPS jest brak obostrzeń na używanie np. tylko jednego typu tranzystorów w obrębie pikseli. Przez to elektroniczne układy odczytowe mogą mieć taką samą funkcjonalność jak w detektorach hybrydowych. Dodanie skutecznego ekranowania warstwy zawierającej układy elektroniczne od detektora likwiduje główny mankament technologii SOI, którym jest niepożądany wzajemny wpływ dwóch elementów wynikający z ich bliskości. Piersze testy układu, w którym wykorzystalem zaproponowane zagniezione studnie BNW i BPW, wykazały skuteczność tego rozwiązania. Dokładniejsze analizy i optymalizacja pod kątem zmniejszenia pojemności pasożytniczej złącza BNW–BPW oraz zmniejszenia impedancji studni BNW są konieczne na dalszych etapach rozwoju tej technologii. Jednak kierunki tych działań zostały przeze mnie dość dokładnie określone.
10. Podsumowanie

Postęp w rozwoju detektorów bazujących na ciele stałym, w szczególności wykorzystujących materiały półprzewodnikowe, i w rozwoju scalonych układów odczytywych miał rewolucyjny wpływ na eksperymenty w dziedzinie fizyki wysokich energii. Krzemowe detektry mikropaskowe i pierwsze wielokanałowe scalone układy odczytowe zapoczątkowały rewolucję w laboratorium CERN i w Fermilabie w latach osiemdziesiątych ubiegłego wieku i umożliwiły epokowe odkrycia. Wkrótce potem łączenie detektorów za pomocą kulek metalu (ang. *bump–bonding*) z wielokanałowymi scalonymi układami odczytowymi zapoczątkowało erę detektorów pikselowych, które zrewolucjonizowały budowę hybrydowych struktur detektorów wierzchołka w eksperymentach fizycznych. Detektry te są obecnie używane we wszystkich eksperymentach, np. na LHC w CERNie, i przyczyniły się do eksperymentalnego stwierdzenia istnienia, czekającego na ostateczne potwierdzenie, bozonu Higgsa. Dążenie do dalszej miniaturyzacji, zwiększania stopnia upakowania, zwiększenia rozdzielczości przestrzennej oraz dążenie do uczynienia detektorów tak lekkimi, jak tylko jest to możliwe, dało początek detektorom monolitycznym. W przypadku tych urządzeń elektroniczny układ odczytowy i detektor są nierozdzielne. Te dwa elementy są na trwałe połączone dzięki ich wytwarzaniu na tym samym wafel materiału półprzewodnikowego.

Zaproponowane dla fizyki detektory monolityczne okazały się bardzo przydatne dla zastosowań również poza ich pierwotnie zamierzonym przeznaczeniem. Niniejszą monografię poświęciłem szczegółowemu omówieniu badań detektorów monolitycznych w zastosowaniach do jednej z takich grup aplikacji poza fizyką wysokich energii. Moje prace dały wyniki w postaci scharakteryzowania detektorów monolitycznych przy użyciu zaprojektowanych przez mnie układów scalonych. W przedstawionej monografii zgromadziłem i omówiłem moje wyniki badań nad monolitycznymi detektorami pikselowymi w zastosowaniach do obrazowania przy użyciu strumieni niskoenergetycznych elektronów i miękkiego promieniowania X. Pozwoliło to na osiągnięcie interesujących rezultatów naukowych. Jednocześnie moje prace doczekały się contynuacji w postaci albo bezpośredniej współpracy z innymi ośrodkami naukowymi, albo w postaci dalszego niezależnego rozwoju detektorów monolitycznych w innych ośrodkach, zainspirowanego i bazującego na osiągniętych przeze mnie wynikach.

Zakres i przebieg prac przedstawionych w monografii

Problematyka poruszona w pracy jest pochodną pierwotnie rozpoczętego rozwoju tego typu detektorów do aplikacji w dziedzinie detekcji promieniowania dla eksperymentów fizyki wysokich energii. W pracy wykorzystywałem moje doświadczenie w budowie systemów detekcyjnych opartych na scalonych układach odczytywych. Celowo zdecydowałem się na oddzielenie materiału zaproponowanego w niniejszej pracy od rozwoju detektorów dla śledzenia torów relatywistycznych cząstek jonizujących. W ten sposób mogłem prze-
prac nad technologicznego, które są konkurencjonane w technologii SOI są wychowane w technologii SOI. Należy umiejscowić detektora, co pozwala na przeprowadzenie eksperymentu naukowego. Takie podejście pomysłów dla funkcjonowania detektorów, z praktycznego punktu widzenia konkretnych problemów, jest świetnie zaangażowane w technologię dla rozwoju wysokich energii.

Moim zamierzeniem podczas tych testów było nie tylko skupienie się na tym, aby uzyskać wyniki i doświadczenie wykorzystać do budowy układu MIMOTERA, ale również na tym, aby dociekać, jakie są inne możliwości wykorzystania nowo otrzymanego typu detektora. Innym wątkiem, a jednocześnie ostatnim elementem przedstawionym w pracy, który również jest bardzo ściśle połączony z materiałem omówionym w rozdziałach wcześniejszych, jest opis rozwoju układów MAMBO realizowanych w technologii SOI. Należy podkreślić, że jest to nowy kierunek, który stanowi siłą konkurencji dla klasycznych detektorów MAPS. Po wprowadzonych ulepszeniach do procesu technologicznego, które są opisane w niniejszej monografii, detektory pikselowe realizowane w technologii SOI są zdecydowanie obiecującą techniką i oferującą nowe możliwości w zastosowaniach do aplikacji takich jak te opisywane w mojej pracy, ale też w fizyce wysokich energii.

W odniesieniu do układu MIMOTERA warte jest podkreślenia, że mimo upływu ponad połowy dekady od budowy tego układu, wciąż pojawiają się nowe komunikaty na głowach konferencji, np. na IEEE Nuclear Science Symposium and Medical Imaging Conference, o nowych pracach naukowych, w których ten detektor jest wykorzystywany.

W pracy położym na podstawie pracy nad wyeksponowanie przydatności połączenia znajomości funkcjonowania detektorów półprzewodnikowych oraz poziom procesów fizycznych z umiejętnością prowadzenia projektów odczytywych układów elektronicznych. Zaprezentowane prace badawcze w mojej monografii wymagały koegzystencji trzech elementów z różnych obszarów, tj.:

- wiedzy z zakresu podstaw fizycznych działania detektorów półprzewodnikowych,
- wiedzy z zakresu projektowania specjalizowanych układów elektronicznych dla odbioru i kondycjonowania sygnałów oraz wysyłania danych z dużych matryc pikselowych na zewnątrz układu scalonego,
- znajomości technologii wytwarzania układów scalonych i umiejętności jej odpowiedniej modyfikacji dla osiągnięcia zamierzonego celu przy zachowaniu równowagi w stosunku do kosztów związanych z wprowadzeniem tych modyfikacji.

Praca zespołowa i kierowanie projektami

Umiejętność współpracy z zespołami ekspertów z przemyślu i z zewnętrznymi dostawcami technologii dla rozwiązywania konkretnych problemów jest szczególnie ważna. Przewidziana współpraca pozwala na uzgadnianie i pełne praktyczne wdrażanie proponowanych pomysłów dla ulepszenia istniejących form detektorów i ostatecznie uzyskanie instrumentu gotowego do przeprowadzenia eksperymentu naukowego. Takie podejście leżało u podłoża prac nad ściśnieniem detektora MIMOSA V, a szczególnie było ono ważne w pracach nad
rozwójem detektorów MAMBO. Rozpoczęcie badań nad monolitycznymi detektorami pikselowymi realizowanymi w technologii SOI wynikało z jednej strony ze zrozumienia ograniczeń będących udziałem klasycznych detektorów MAPS, a z drugiej strony właśnie z podjęcia sposobności i wykorzystania możliwości, jakie otworzyły się we współpracy z laboratorium KEK i z firmą OKI/LAPIS Semiconductor Co. z Japonii.

Konstrukcja dużych eksperymentów naukowych jest współcześnie wynikiem współpracy nawet setek osób częstokroć pracujących w różnych ośrodkach. Podobnie prace nad elementami składowymi tych eksperymentów, jakimi są detektyry czy projektowane scalone układy odczytowe, są rozdzielenie między wiele osób. Rosnące stopnie skomplikowania powodują, że pracom projektowym mogą sprostać jedynie wieloobowiązowe zespoły, których członkowie specjalizują się w poszczególnych zadańach. Działania takich zespołów było mi dane poznac bezpośrednio względnie wcześniej, kiedy pod koniec lat 90. pracowałem nad projektami scalonych układów odczytywych do detektorów mikropaskowych dla eksperymentów na Wielkim Zderzaku Hadronów (ang. Large Hadron Collider – LHC) znajdującym się w CERN-ie. Wiedza o organizacji prac i poczynione spostrzeżenia dotyczące koordynacji prac w zespole były dla mnie cennymi elementami wyniesionymi z tego okresu. Nabyta umiejętność komunikacji i pokierowania wspólnymi dyskusjami była przydatna dla mnie obecnie dla przeprowadzenia części prac badawczych, w szczególności w zakresie dotyczącym wykonania projektów układów scalonych, na które składają się różne bloki funkcjonalne.

Odkrywając monolityczne detekytory pikselowe dla eksperymentów fiziycznych wysokich energii w czasie mojego doktoratu i pracując później nad ich udoskonalaniem, np. przez rozbudowanie funkcji układów odczytowych, byłym świadkiem jak bardzo szybko i efektywnie zacząły formować się grupy współpracujące ze sobą lub rozpoczynające prowadzenie własnych badań. W efekcie znajdowało kolejne zastosowania dla detektorów MAPS. Podobny schemat był udziałem badań detekcji niskoenergetycznych elektronów, których wynik miał istotne znaczenie bezpośrednio dla programu SUCIMA. Można tutaj podać jako przykład, że wykazanie przydatności i dokonanie scharakteryzowania detektorów MAPS dla bezpośredniego obrazowania z wykorzystaniem elektronów w mikroskopii elektronicznej wywodziło duże zainteresowanie ośrodków naukowych zarówno w Europie, jak i w USA, skutkując projektami nowych detektorów MAPS i pojawieniem się nowych wyników. Zainteresowanie to było między innymi zauważalne w liczbie cytowań publikacji z badań detektora MIMOSA V, które przeprowadziłem w BNL. Publikacja, która ukazała się w Ultramicroscopy [54] w 2007 r., sama liczy obecnie, na koniec pierwszego kwartału 2013 r., 37 cytowań według systemu indeksującego SCOPUS. Ten wynik świadczy o przydatności przeprowadzonych badań.

** Wyniki osiągnięte z układem MIMOSA V **

W monografii została pokazana droga od pierwszego pomysłu użycia detektora MAPS, układu MIMOSA V do bezpośredniej detekcji niskoenergetycznych elektronów i miękkiego promieniowania X, przez projekt i testy detektora MIMOTERA, aż do zaprezentowania nowej kategorii pikselowych detektorów monolitycznych realizowanych w technologii SOI. Dla detektora MIMOSA V pokazano metodę kalibracji współczynnika konwersji ładunku na napięcie wraz z analizą poprawności poczynionych przy użyciu tej metody założeń. Opisano sposób uzyskania detektora MAPS ścianionego do takiej grubości, że elektrony o energiach nieprzekraczających kilknastu kiloelektronowoltów mogą bezpo-

183
średnio docierać do warstwy aktywnej detektora i generować w niej sygnał. W tym czasie była to pierwsza taka realizacja znana na świecie.

W przeprowadzonych eksperymentach z użyciem ściennionych detektorów MIMOSA V wyznaczone najpierw kres dolny energii elektronów, które mogły generować mierzalne sygnały w detektorze. Następnie pokazano możliwość zastosowania ściennionego detekторa MIMOSA V do autoradiografii materiałów nasyconych emitterami niskoenergetycznego promieniowania β, np. poprzez testy z wykorzystaniem HPD i obrazowanie polimerowego źródła ³H. Niski poziom szumu oraz cienkie pasywne okno wejściowe pozwoliły na obniżenie prógu detekcji energii elektronów do około 5 keV. Stwierdzono, że próg energii może być jeszcze bardziej obniżony w przyszłych realizacjach detektorów MAPS pod warunkiem uzyskania jeszcze cieńszego okna wejściowego oraz optymalizacji detektoru pod kątem szumu. Od strony technicznej otrzymanie okna wejściowego o grubości od kilku do kilku-dziesięciu nanometrów jest możliwe. Jednocześnie obniżenie poziomu szumu do około 10 e⁻ zostało zademonstrowane na przykładzie innych prototypów MAPS.

Droga do sukcesu autoradiografii źródła trytu był specjalnie przygotowany do tego celu program analizy danych, który pozwolił na efektywne wyładowanie rdzakich przypadków emisji promieniowania pochodzącego od rozpadów β⁻ z ogromnej ilości zbieranych danych. Bezpośrednia detekcja promieniowania β przy użyciu detektorów MAPS jest bardzo atrakcyjna w zastosowaniach do obrazowania próbek biologicznych lub bioczynowych, które dla uzyskania informacji strukturalnej są wym. Jednocześnie nie byli poprzez odpowiedni jego montaż i lepszą rozdzielczość przestrzenną. Wykazano, że pogorszenia rozdzielczości, wynikającej z rozpraszania wstecznego, może być łatwo zminimalizowane dzięki ściennieniu detektoru i poprzez odpowiedni jego montaż w mikroskopie elektronowym. Detektor MIMOSA V nie był optymalizowany pod żadnym kątem do zastosowania w mikroskopie elektronowym. Jednak wyniki osiągnięte w testach pokazały, że detekatory MAPS mogą być wydajnym narzędziem do zbierania obrazów wzorów dyfrakcyjnych przy oferowanej wysokiej rozdzielczości przestrzennej oraz znacznym zakresie dynamicznym. Wysoka czułość tych detektorów pozwala na more możliwości pracy przy znacznie niższych prądach węzłów w porównaniu np. z tymi, jakie są konieczne dla uzyskania obrazu na blonie fotograficznej lub na płycie obrazowej. W pracy pokazaliśmy zmienną bardzo dobrą wartość PSF, zdolność detekcji pojedynczych elektronów przy zachowaniu wysokiego stosunku sygnału do szumu i zdolność rejestracji wzorów dyfrakcyjnych rzeczywistych próbek materiałów. Wyliczona wartość DQE i MTF okazały się porównywalne, lub nieznacznie lepsze od tych, jakie można uzyskać w układach obrazujących, bazujących na elementach CCD. Przy tym elementy
CCD nie nadają się do bezpośredniej detekcji w mikroskopie elektronowym, co ogromnie komplikuje budowę systemów obrazujących z ich zastosowaniem. Rezultaty, otrzymane przeze mnie, były pierwszymi bardzo zachęcającymi krokami w kierunku rozwoju nowych detektorów na potrzeby dynamicznej mikroskopii elektronowej. Detektor MAPS jest w istocie w pełni funkcjonalnym układem scalonym wielkiej skali integracji. Jego architektura odczytowa może zawierać funkcje przetwarzania sygnału zarówno już na poziomie piksela, jak i na obrazach matrycy pikseli. Sumarycznie można stwierdzić, że zebrane doświadczenie może posłużyć jako drogowskaz dla projektu układu detektora, który będzie programowo zorientowany na zapewnienie parametrów zgodnych z wymaganiami mikroskopu elektronowego.

Podsumowując testy układu MIMOSA V do pracy w modułach obrazujących mikroskopów elektronowych, należy wziąć pod uwagę zagadnienie odporności detektora na dawki promieniowania. Chociaż projekt układu MIMOSA V nie był nastawiony na zapewnienie odporności na promieniowanie, to zostało wykazane, że jego wytrzymałość była znacząco większa niż elementów CCD, które do tego zastosowania zupełnie się nie nadają. Zagadnienie odporności na promieniowanie jest szeroko poruszone w literaturze i również w tej pracy przedstawiono wypracowane przeze mnie metody uzyskiwania diod zbierających ładunki w detektorach MAPS o znacznie obniżonych prądach wpływem. Dodatkowo wiadomo z innych opracowań literaturowych, że osiągnięcie wysokich progów odporności rzędu 30 Mrad leży w zakresie możliwości detektorów MAPS. W mikroskopii elektronowej celem jest osiągnięcie prędkości przesyłania obrazów na poziomie 1000 fps przy wielkościach matryce pikseli rzędu 4096×4096. Ponownie należy stwierdzić, że nie są to wymagania możliwe do spełnienia przez klasyczne rozwiązania wykorzystujące elementy CCD. Natomiast detekatory MAPS są w stanie tym wymaganiami sprostać. Szkacząc jednak urządzenia poddanego pełnej optymalizacji, należy stwierdzić, że jedynie wyposażenie każdego piksela przynajmniej w układ dyskryminatora i licznik zliczający poszczególne przypadki, niezależnie od wartości deponowanej energii w warstwie aktywnej, jest w stanie zagwarantować polepszenie DQE. Na ten kierunek zwiększenia funkcjonalności każdego piksela nastawione są nowe rozwiązania. Jednym z nich jest proponowany przeze mnie na zakończenie niniejszej pracy detektor monolityczny, zrealizowany w zaawansowanej technologii CMOS SOI.

W kolejnym kroku wykonano testy układu MIMOSA V na wiązce promieniowania X na synchrontronie w BNL. Detektory MAPS mogą być postrzegane jako alternatywa w niektórych zadaniach bezpośredniego obrazowania z użyciem promieniowania X, szczególnie tam, gdzie wymagana jest wysoka rozdzielczość przestrzenna, jednak zakres energii promieniowania X do obrazowania jest ograniczony do maksymalnie około 10 keV ze względu na grubość warstwy aktywnej. W pracy przedstawiono kilka przykładów wysokiej rozdzielczości obrazów radiogramowych i wyniki badań granic, w jakich detektor MAPS może pracować jako detektor zliczający pojedyncze fotony. Dla zwiększenia wydajności detekcji promieniowania X przez detektor MAPS można odwolàć się do wytwarzania tych detektorów na podłożach o znacznie grubszej warstwie epitaksjtalnej, co jest technologicznie możliwe i co również zostało wspomniane w mojej pracy. Można również, jak zostało to wskazane przy dyskusji zagadnień dotyczących detektorów do bezpośredniej detekcji elektronów w mikroskopie elektronowym, jednocześnie zwiększając funkcjonalność każdego piksela, zwrócić się w kierunku realizacji monolitycznych detektorów pikselowych do obrazowania, korzystając z zaawansowanej technologii CMOS SOI. Spostrzeżenie to stało się kolejnych powodem rozważenia technologii CMOS SOI do budowy detektorów mono-
litycznych i w konsekwencji szerokiego opisania przeze mnie tego kierunku na zakończenie niniejszej pracy.

 Wyniki osiągnięte z układem MIMOTERA

Projekt europejski SUCIMA, którego celem było zbudowanie nowatorskiego systemu monitorowania wiązki w terapii hadronowej, wymagał detektora zdolnego rejestrować obrazy w wyniku bezpośredniej detekcji niskoenergetycznych elektrown. Konstrukcja urządzenia monitorującego, nazywanego SLIM, była uwarunkowana wykadaniem technologicznymi możliwości budowy detektora MAPS jednorodnie ściśniętego do zaledwie warstwy epitaksjalnej, który po ściśnięciu zachowały zdolność konwersji padającego promieniowania na sygnały elektryczne i wszystkie pozostałe parametry elektryczne układu elektronicznego, jakie miał oryginalnie.

W monografii przedstawiono, w jaki sposób uzyskano potwierdzenie wykonalności tego zadania, posługując się detektorem MIMOSA V jako platformą testową przed uruchomieniem nowego, obarczonego ryzykiem projektu. Testy wykonane na układzie MIMOSA V pozwoliły na potwierdzenie poprawności decyzji powiązanych dla wykonania projektu, w szczególności fundamentalnej decyzji dotyczącej propozycji użycia detektora MAPS w budowanym urządzeniu. Po pomyślnym zakończeniu testów ze ściśniętą wersją detektora MIMOSA V urządzenie monitora wiązki dla programu SUCIMA zostało w pełni zaprojektowane. Następnie zostało ono zbudowane oraz równolegle do prac nad klatką urządzenia SLIM został zaprojektowany detektor MAPS przeznaczony do pracy w tym urządzeniu. Detektor nazwany MIMOTERA i jego funkcję było obrazowanie bazujące na rejestracji elektronów pochodzących z emisji wtórnej z cienkiej folii aluminiowej (Al–Al₂O₃–Al), przez którą przechodziła pierwotna wiązka jonów bezpośrednio przeznaczona do leczenia. Elektrony wtórne dostawały się w poprzeczne pole elektryczne, w którym były przyspieszane, i uderzając w detektor obrazujący, w tym wypadku w układ MIMOTERA, powodowały odzwornianie profilu wiązki pierwotnej na płaszczyźnie detektora. Układ MIMOTERA oferuje odczyt ciągły z zupełnie wyeliminowanym czasem martwym. Efekt ten został osiągnięty dzięki ciągłąm i równomiernemu podziałowi generowanego ładunku w każdym pikselu pomiędzy dwa niezależne kanały odczytowe i przepłot tych dwóch kanałów w procesie wysyłania danych na zewnątrz detektora.

W ramach prac nad układem MIMOTERA przeanalizowano źródła powstawania prądu upływu oraz wpływ akumulacji dawek promieniowania jonizującego na detektor i elektroniczne układy odczytowe. W konsekwencji opracowano nowe konstrukcje diod zbierających ładunku i użyto ich w konstrukcji układu MIMOTERA. Opracowano struktury diod, które wykorzystują dostępne standardowo maski i nie naruszają reguł projektowych, a charakteryzują się znacznie obniżonymi poziomami prądów upływu i zwiększoną odpornością na promieniowanie jonizujące. Zakres testów, jakim poddano układ MIMOTERA był bardzo szeroki, skutkując wykadaniem osiągnięcia założeń projektowych i ogólnym potwierdzeniem poprawności wykonania projektu. Przydatność układu MIMOTERA była sprawdzana również w zastosowaniach wychodzących poza zakres programu SUCIMA.

Droga rozwoju układów MAMBO i osiągnięte wyniki

Zwieńczeniem materiału zawartego w monografii jest szerokie przedstawienie rozwoju monolitycznych detektórow pikselowych realizowanych w specjalnie zaadaptowanej do tego celu technologii SOI. Monolityczne detektory pikselowe realizowane w technologii SOI są przedstawione na podstawie ramowego programu rozwoju detektorów MAMBO. Ta
klasa detektorów MAPS pozwala na zbieranie ładunku, uwolnionego w procesach oddziaływania promieniowania z materiałem detektora pod wpływem pola elektrycznego. Jest to niezwykle korzystne, gdyż dla detektora, którego objętość aktywna jest zubożona, ładunek dociera najszybciej do elektrody zbierającej. W ten sposób redukuje się do minimum możliwość utraty ładunku w procesach rekombinacji i jego pułapkowanie. Jednocześnie każdy piksel zawiera układ elektroniczny pozwalający na ciągłe przetwarzanie sygnałów. Możliwe jest zatem zbudowanie układów zliczających impulsy, jak zostało to przedstawione w monografii, oraz implementacja innych funkcji, takich jak np. pomiar czasu zachodzenia zdarzeń.

W technologii pikselowych detektorów, realizowanych przy użyciu procesu SOI, nie istnieje ograniczenie na możliwość stosowania tylko jednego typu tranzystorów, jak było to udziałem klasycznych detektors MAPS. Przez to elektroniczne układy odczytowe mogą mieć taką samą rozbudowaną funkcjonalność, jak jest to udziałem detektors hybrydowych. Jednak w pierwszoręcznym procesie niezwykle dotkliwy był problem interferencji pomiędzy częścią detektora a częścią zawierającą elektroniczny układ odczytowy. W wyjściowej formie procesu obydwie części były od siebie oddzielone jedynie przez cienką warstwę dielektryczną BOX i brak było jakiegokolwiek ekranowania. W wyniku szczegółowej analizy problemu, wliczając w to testy zaprojektowanych urządzeń prototypowych, zaproponowałem zmiany do procesu technologicznego. Modyfikacja procesu polega na wprowadzeniu zagnieźdzonych studni BNW i BPW, które są wykonywane w procesie wielostopniowej implantacji. Proces, obecnie oferowany przez OKI/LAPIS Semiconductor Co., jest uzupełniony o te zmiany i jest dostępny ogólni środowisk naukowej pracującej nad rozwojem pikselowych detektorów realizowanych w technologii SOI. Udostępnienie tego zmienionego procesu SOI jest istotnym krokiem w kierunku rozwoju nowej generacji monolitycznych detektorów pikselowych. Dodanie skutecznego ekranowania układów elektronicznych od detektora likwiduje główny mankament technologii SOI, którym jest niepożądana wzajemna wpływ dwóch elementów, wynikająca z ich bliskości. Pierwsze testy układu detektora pikselowego, w którym wykorzystałem zaproponowane zagnieźdzone studnie BNW i BPW, wykazały skuteczność tego rozwiązania. Oczywiście konieczne są dokładniejsze analizy i optymalizacja pod kątem zmniejszenia pojemności pasywniej złącza BNW–BPW oraz zmniejszenia impedancji studni BNW na dalszych etapach rozwoju tej technologii. Jednak ważnym osiągnięciem jest w pełni pomyślna wykaźanie skutecznego działania detektora wykonanego w technologii ze zmienioną recepturą. Zostało to zademonstrowane w pracy na przykładzie obrazowania z wykorzystaniem źródła radioaktywnego 109Cd. W pracy zaprezentowano również szczegóły pełnego projektu toru rejestracji i przetwarzania sygnałów pochodzących od zdarzeń oddziaływania promieniowania z detektorem. Opracowany układ elektroniczny ma charakter uniwersalny i jest implementowany nie tylko w kolejnych wersjach układów MAMBO, ale również jest wykorzystywany na potrzeby innych projektów.
11. Zakończenie: dalsze kierunki prac i podziękowania

11.1. Dalsze kierunki prac

Należy pamiętać, że postęp technologiczny nie zatrzymuje się. Wydaje się, że obecnie jesteśmy na początku nowego przełomu technologicznego, tj. integracji trójwymiarowej (3D–IC) układów scalonych. Ta technologia jest jedną z kierunków prowadzących przemysł do uzyskania generacji układów scalonych o znacznie wyższej od obecnej wydajności, szczególnie w odniesieniu do pamięci i systemów mikroprocesorowych. Scalone układy 3D, również nazywane 3D–IC (ang. 3D Integrated Circuits), są tworzone przez trwące wiązanie ze sobą dwóch lub więcej wafli zawierających zwykle układy scalone, przy czym uzyskuje się nie tylko połączenie mechaniczne, ale przede wszystkim zapewniony jest przepływ sygnałów elektrycznych pomiędzy połączonymi poziomami. Te połączenia elektryczne, podobne w istocie do zwykłych przelotek (ang. vias) zapewniają przejścia pomiędzy warstwami ścieżek metalowych w zwykłym układzie scalonym, nazywane są TSV (ang. Through Silicon Via). W wiodących technologiach TSV są bardzo małe, tj. osiągające wymiary o średnicy zaledwie 1 μm przy głębokości połączenia sięgającej około 10 μm.

Obecnie technologie detektorów pikselowych stanęły przed poważnymi wyzwaniami i ograniczeniami, które są szczególnie widoczne dla systemów detektorowych wymagających połączenia bardzo wysokiego poziomu segmentacji z równie wysokim wymaganym poziomem przetwarzania sygnałów in-situ, oczywiście nie można zapomnieć o tym, że detektor musi być bardzo lekki i niezawodny. Detektory monolityczne wniosły w tym zakresie istotny wkład. Na szczególnie podkreślenie zasługuje zmniejszenie wielkości piksela zawierającego układy elektroniczne rozpoczęające przetwarzanie sygnału bezpośrednio przy jego źródle. Detektory te stały się obecnie technologią dojrzałą i zyskują coraz szersze pola zastosowań. Jednakże wspomniana technologia integracji trójwymiarowej oferuje transformacyjne zmiany w technice detektorowej. Zmiany te idą w kierunku zniesienia obecnie istniejących głównych przeszkód tkwiących w tradycyjnym korzystaniu z dwuwymiarowych technologii planarnych. Do przeszkód tych należą następujące elementy: trudność uzyskania pełnej separacji części analogowej i cyfrowej na układzie scalonym, niemożliwość zwiększenia funkcjonalności piksela przy jednoczesnym dążeniu do zmniejszenia jego rozmiarów nawet przy korzystaniu z technologii o minimalnej długociu. Brak bramki znacząco poniżej 100 nm, niedogodność poprawnego zasilania piksli znajdujących się w środku matrycy ze względu na spadki napięcia na linii zasilających, trudność w budo-wie detektorów o dużych rozmiarach ze względu na konieczność zapewnienia obszarów na pola kontaktowe, czy też ograniczenie w uzyskaniu małych piksli ze względu na nieosiągalne obecnie gęstości połączeń między detektem a scalonym układem odczytowym przy
zastosowaniu metody integracji hybrydowej. Wstępne wyniki osiągnięte przy użyciu technologii trójwymiarowej integracji oraz zrozumienie jej podstaw pozwolą przypuszczać, że będzie ona technologią szeroko stosowaną w przyszłych detektorach promieniowania, nie-zeżaleźnie od wyboru aplikacji.

W Fermilabie, gdzie pracuję od 2007 r. i obecnie kieruję grupą mikroelektroniczną, zaczęliśmy inwestować w technologię integracji trójwymiarowej przez prototypowanie pierwszych odczytnych układów 3D dla detektora wierzchołka w eksperymentie ILC już w 2006 roku [63]. W kolejnych latach, korzystając ze sposobności produkcji układów 3D nadarzających się dzięki współpracy z różnymi jednostkami rozwijającymi pionierskie technologie 3D, dodaliśmy prace nad bardziej złożonymi prototypami detektorów pikselowych. Są to układy dla eksperymentów na LHC oraz dla obrazowania, włączając w obrazowanie spektroskopię czasową, synchrotronowego promieniowania X–ray [123][124]. Dla popularyzacji technologii trójwymiarowej integracji Fermilab zorganizował pierwszą wieloprojektową serię produkcyjną (ang. Multi–Project Wafer – MPW) układów 3D MPW, w której wysłane zostały do produkcji układy zaprojektowane w różnych ośrodkach naukowych znajdujących się również poza Stanami Zjednoczonymi. Ostatnio zostały przetestowane pierwsze prototypy i w tych testach osiągnięto pozytywne rezultaty. Są to pierwsze kroki, jednak przez potwierdzenie prawidłowego działania zaprojektowanych układów scalonych została wykazana trafność wyboru technologii trójwymiarowej integracji jako technologii dla detektorów w przyszłości. Możliwość połączenia wyróżniających zalet detektorów monolitycznych i hybrydowych w jednej strukturze stanowi o potencjale technologii 3D.

Celem krótkiego wprowadzenia technologii 3D na Rys. 11.1 i Rys. 11.2 przedstawiono dwa wybrane slajdy pochodzące z mojej prezentacji na zebraniu poświęconym rozwojowi detektorów pikselowych.

Rys. 11.1 Definicja układów zintegrowanych trójwymiarowo, główne składniki technologii 3D–IC oraz przykłady dwóch procesów 3D, jakie były wykorzystane w Fermilabie do budowy prototypowych układów odczytnych w programie rozwoju detektorów pikselowych, tj. via–last z MIT–LL i via–middle z Tezzaron/GlobalFoundries.

Rys. 11.2 Trzy główne transformacyjne zmiany oferowane przez technologie 3D.

Należy nie bez powodów przypuszczać, że zastosowanie technologii trójwymiarowej integracji będzie nabierało wzrastającego znaczenia. W tym nowym kontekście detektry monolityczne będą funkcjonowały albo samodzielnie, głównie ze względu na niskie koszty ich wytwarzania, albo jako jedna z warstw trójwymiarowo zintegrowanych systemów. W tym drugim przypadku nie bez znaczenia będzie podtrzymanie zalety zintegrowania pierwszych stopni przetwarzania sygnału bezpośrednio na detektorze, jak najbliżej źródła powstania sygnału. Jest to możliwe przy wykorzystaniu technik monolitycznych, a następ-
nie dołączenie dalszych stopni bardziej skomplikowanego przetwarzania, używając technik integracji 3D.

11.2. Podziękowania

Chciałbym wyrazić podziękowania wszystkim osobom, które okazały mi pomoc, przekazały cenne wskazówki, umożliwiły dostęp do infrastruktury testowej, asystowały przy przeprowadzaniu testów i analizie otrzymywanych wyników, czyli wszystkim, których obecność i działania pomogły mi w uzyskaniu materiału do niniejszej monografii.

W podziękowaniach zawsze jest trudno zawrzeć wszystkie wyrazy wdzięczności i nie zapomnieć o kimś, o kim nie powinno się zapomnieć. Na pewno nie chciałbym zapomnieć o kilku osobach, które uważyam, że najbardziej przyczyniły się do przebiegu mojego rozwoju zawodowego i pozwoliły mi ukształtować moje zainteresowania i moj warsztat.

Zaczynając zupełnie od samego początku chciałbym podziękować: prof. drowi hab. inż. Stanisławowi Kucie za przekazane podstaw wiedzy zakresu z konstrukcji układów elektronicznych, prof. drowi hab. inż. Wojciechowi Kucewiczowi, który rozpalił moje zainteresowanie dziedziną mikroelektroniki i detektorów, tj. dziedziną, która jest moją pasją, drowi Wojciechowi Dulinskimi, z którym dane mi było przeżyć wspaniałą przygodę rozpoczętą moim doktoratem w laboratorium LEPSI w Strasburgu, która później przekształciła się w post-doc w ramach programu SUCIMA, drowi Marcowi Winterowi, który kierował grupą „Capteurs CMOS” w Strasburgu i dzięki którego akceptacji wiele pomysłów na badania mogłem zrealizować, drowi Massimowi Cacci, który kierował programem SUCIMA, drowi Pavlovi Rehaku (niestety, zmarłemu w 2008 r.), którego wiedza i doświadczenie zawsze miałem zaszczyt pracować, drowi Rayowi Ya-remies, który dbał o stworzenie korzystnych warunków i pomagał w realizacji pomysłów.

Na zaprezentowaną monografię składa się wiele elementów, które były oddzielnymi eksperymentami lub analizami przeprowadzonymi przeze mnie. Te badania wymagały dokładnego przygotowania infrastruktury i oka eksperta pomocnego w osiągnięciu wyraźnych wyników.

Chciałbym wymienić, zachowując kontekst wyodrębnionych zakresów tematycznych, które oddają w zasadzie kolejność prezentacji materiału w monografii, następujące osoby, oprócz wymienionych wcześniej, którym jestem wdzięczny za okazaną mi pomoc i współpracę:

Układ MIMOSA V

dr Daniel Berst (zmarły w 2010 r.), dr Christine Hu, Claude Colledani, Gilles Claus z Institut Pluridisciplinaire Huber Curien (dawniej LEPSI), Strasburg, Francja,
System testowy HPD

dr Jacques Seguinot, dr Christian Joram, dr Andrea Braem z CERN, Genewa, Szwajcaria,

Autoradiografia 3H:

Prof. Norbert Wermes z Physikalisches Institut z Universität Bonn, Bonn, Niemcy,
dr Marcel Trimpl z Fermi National Accelerator Laboratory, Batavia, IL, USA, dr Michał Szeleźniak z Institut Pluridisciplinaire Hubert Curien, Strasburg, Francja,

Mikroskopia elektronowa:

dr Joe Wall, dr John Warren, dr Yimei Zhu z Brookhaven National Laboratory, NY, USA, dr Auguste Besson i dr Michał Szeleźniak z Institut Pluridisciplinaire Hubert Curien, Strasburg, Francja,

Wiązka promieniowania X w NSLS:

dr Gabriella Carini, dr Zhong Zhong, dr David Peter Siddons z Brookhaven National Laboratory, NY, USA, dr Michał Szeleźniak i dr Auguste Besson z Institut Pluridisciplinaire Hubert Curien, Strasburg, Francja,

Układ MIMOTERA:

dr Philippe Rommeveaux, dr Jacques Chautemps z ATMEL Grenoble, Saint Egrève, Francja, dr Adam Czermak z Instytutu Fizyki Jądrowej im. H. Niewodniczańskiego w Krakowie,

Piksele SOI – układ MAMBO:

dr Yasuo Arai z KEK, Tsukuba, Japonia, dr Masao Okihara i dr Ikuo Kurachi z OKI Semiconductor Co. LTD., Miyagi, Japonia, Farah Khalid z Fermi National Accelerator Laboratory, Batavia, IL, USA.

Wymienione osoby bez wątpienia są tymi, które przyczyniły się i pomogły mi w osiągnięciu wyników przedstawionych w niniejszej monografii. Z pewnością wymienienie tych osób nie wyczerpuje listy wszystkich, którym powiniem przekazać podziękowania. Chciałbym podziękować wszystkim Koleżankom i Kolegom z zespołów, w których miałem możliwość pracować.
Literatura

193

[73] G. Anelli, *Conception et characterisation de circuits intégrés résistants aux radia-
tions pour les détecteurs de particules du LHC en technologies CMOS submicroniques profondes, rozprawa doktorska, Institut National Polytechnique de Grenoble, Francja, 2000

[91] *Reduced Leakage Trench Isolation*, United States patent: 6,410,359, 2002

[92] *Dark Current Reducing Guard–Ring*, United States patent: 5,859,450, 1999

[93] *Method of Making Active Pixel Sensor Cell that Minimizes Leakage Current*, United States patent: 5,970,316, 1999

199

[103] Dane procesu IBM 130nm CMOS (CMOS 8SF Technology Design Manual)

[112] K. Korb, Ekstrakcja informacji z sygnału radiometrycznego, WFiIS AGH, Kraków, 2006

200

